Vertebrate Development Maternal to Zygotic Control (Advances in Experimental Medicine and Biology)

(nextflipdebug2) #1

304


Williams M, Burdsal C, Periasamy A et al (2011) Mouse primitive streak forms in situ by initia-
tion of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn
241:270–283. doi:10.1002/dvdy.23711
Williams M, Yen W, Lu X, Sutherland A (2014) Distinct apical and basolateral mechanisms drive
planar cell polarity-dependent convergent extension of the mouse neural plate. Dev Cell 29:34–



  1. doi:10.1016/j.devcel.2014.02.007
    Wills AE, Choi VM, Bennett MJ et al (2010) BMP antagonists and FGF signaling contribute
    to different domains of the neural plate in Xenopus. Dev Biol 337:335–350. doi:10.1016/j.
    ydbio.2009.11.008
    Wilson E (1928) The cell in development and heredity, 3rd edn. The Macmillian Company,
    New York
    Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by
    Bmp-4. Nature 376:331–333. doi:10.1038/376331a0
    Wilson SI, Rydstrom A, Trimborn T et al (2001) The status of Wnt signalling regulates neural and
    epidermal fates in the chick embryo. Nature 411:325–330. doi:10.1038/35077115
    Wilson V, Olivera-Martinez I, Storey KG (2009) Stem cells, signals and vertebrate body axis
    extension. Development 136:1591–1604. doi:10.1242/dev.021246
    Winklbauer R, Nagel M (1991) Directional mesoderm cell migration in the Xenopus gastrula. Dev
    Biol 148:573–589
    Winklbauer R, Selchow A, Nagel M, Angres B (1992) Cell interaction and its role in mesoderm
    cell migration during Xenopus gastrulation. Dev Dyn 195:290–302
    Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required
    for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116
    Witschi E (1956) Proposals for an international agreement on normal stages in vertebrate
    embryology. In: XIV international congress of zoology, Copenhagen, pp 260–262
    Wolda SL, Moody CJ, Moon RT (1993) Overlapping expression of Xwnt-3A and Xwnt-1 in neural
    tissue of Xenopus laevis embryos. Dev Biol 155:46–57. doi:10.1006/dbio.1993.1005
    Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor
    Biol 25:1–47
    Wolpert L (1971) Positional information and pattern formation. Curr Top Dev Biol 6:183–224
    Wöhrle S, Wallmen B, Hecht A (2007) Differential control of Wnt target genes involves epigenetic
    mechanisms and selective promoter occupancy by T-cell factors. Mol Cell Biol 27:8164–8177.
    doi:10.1128/MCB.00555-07
    Wu C-I, Hoffman JA, Shy BR et al (2012a) Function of Wnt/β-catenin in counteracting Tcf3
    repression through the Tcf3-β-catenin interaction. Development 139:2118–2129. doi:10.1242/
    dev.076067
    Wu G, Huang H, Garcia Abreu J, He X (2009) Inhibition of GSK3 phosphorylation of beta-
    catenin via phosphorylated PPPSPXS motifs of Wnt coreceptor LRP6. PLoS One 4:e4926.
    doi:10.1371/journal.pone.0004926
    Wu S-Y, Shin J, Sepich DS, Solnica-Krezel L (2012b) Chemokine GPCR signaling inhibits
    β-catenin during zebrafish axis formation. PLoS Biol 10:e1001403. doi:10.1371/journal.
    pbio.1001403
    Wylie CC, Kofron M, Payne C et al (1996) Maternal beta-catenin establishes a “dorsal signal” in
    early Xenopus embryos. Development 122:2987–2996
    Wynn ML, Kulesa PM, Schnell S (2012) Computational modelling of cell chain migration
    reveals mechanisms that sustain follow-the-leader behaviour. J R Soc Interface 9:1576–1588.
    doi:10.1002/dvdy.22612
    Xanthos JB, Kofron M, Tao Q et al (2002) The roles of three signaling pathways in the formation
    and function of the Spemann Organizer. Development 129:4027–4043
    Xu PF, Houssin N, Ferri-Lagneau KF et al (2014) Construction of a vertebrate embryo from two
    opposing morphogen gradients. Science 344:87–89. doi:10.1126/science.1248252
    Xue Y, Zheng X, Huang L, et al. (2014) Organizer-derived Bmp2 is required for the formation of
    a correct Bmp activity gradient during embryonic development. Nat Commun. doi:10.1038/
    ncomms4766


D.W. Houston

http://www.ebook3000.com

Free download pdf