369
Gräper L (1929) Die Primitiventwicklung des Hühnchens nach stereokinematographischen
Untersuchungen, kontrolliert durch vitale Farbmarkierung und verglichen mit Entwicklung
anderer Wirbeltiere. Wilhelm Roux’ Arch Entwicklungsmech Org 116:382–429
Green JB, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF
are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell
71:731–739
Green JB, Smith JC (1990) Graded changes in dose of a Xenopus activin A homologue elicit step-
wise transitions in embryonic cell fate. Nature 347:391–394
Griffin K, Patient R, Holder N (1995) Analysis of FGF function in normal and no tail zebrafish
embryos reveals separate mechanisms for formation of the trunk and the tail. Development
121:2983–2994
Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development
127:921–932
Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF (1999) The EGF-CFC protein
one-eyed pinhead is essential for nodal signaling. Cell 97:121–132
Grunz H (1983) Change in the differentiation pattern of Xenopus laevis ectoderm by variation of
the incubation time and concentration of vegetalizing factor. Roux’s Arch Dev Biol
192:130–137
Gu Z, Nomura M, Simpson BB, Lei H, Feijen A, van den Eijnden-van Raaij J, Donahoe PK, Li E
(1998) The type I activin receptor ActRIB is required for egg cylinder organization and gastru-
lation in the mouse. Genes Dev 12:844–857
Gurdon JB, Mitchell A, Mahony D (1995) Direct and continuous assessment by cells of their posi-
tion in a morphogen gradient. Nature 376:520–521
Haeckel E (1874) Memoirs: The Gastraea-theory, the phylogenetic classification of the animal
kingdom and the homology of the germ-lamellae. J Cell Sci S2–14:223–247
Hagos EG, Dougan ST (2007) Time-dependent patterning of the mesoderm and endoderm by
Nodal signals in zebrafish. BMC Dev Biol 7:22
Hagos EG, Fan X, Dougan ST (2007) The role of maternal Activin-like signals in zebrafish
embryos. Dev Biol 309:245–258
Haller A, Arnay JR (1758) Sur la formation du coeur dans le poulet. Marc-Mich, Bousquet,
Lausanne
Hamburger V (1984) Hilde Mangold, co-discoverer of the organizer. J Hist Biol 17:1–11
Hardcastle Z, Chalmers AD, Papalopulu N (2000) FGF-8 stimulates neuronal differentiation
through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Curr Biol
10:1511–1514
Hardin J, Keller R (1988) The behaviour and function of bottle cells during gastrulation of Xenopus
laevis. Development 103:211–230
Hardy KM, Yatskievych TA, Konieczka J, Bobbs AS, Antin PB (2011) FGF signalling through
RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken
primitive streak without affecting E-cadherin expression. BMC Dev Biol 11:20
Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ (2004) Evidence for an expansion-
based temporal Shh gradient in specifying vertebrate digit identities. Cell 118:517–528
Harvey SA, Smith JC (2009) Visualisation and quantification of morphogen gradient formation in
the zebrafish. PLoS Biol 7:e1000101
Harvey W (1651) Exercitationes de generatione animalium. Quibus accedunt quaedam De partu:
De membranis ac humoribus uteri: & De conceptione. Typis Du-Gardianis; impensis Octaviani
Pulleyn, Londini
Hatada Y, Stern CD (1994) A fate map of the epiblast of the early chick embryo. Development
120:2879–2889
Hatta K, Takahashi Y (1996) Secondary axis induction by heterospecific organizers in zebrafish.
Dev Dyn 205:183–195
Heisenberg CP, Nusslein-Volhard C (1997) The function of silberblick in the positioning of the eye
anlage in the zebrafish embryo. Dev Biol 184:85–94
Helde KA, Grunwald DJ (1993) The DVR-1 (Vg1) transcript of zebrafish is maternally supplied
and distributed throughout the embryo. Dev Biol 159:418–426
7 Establishment of the Vertebrate Germ Layers