429
Chiquoine AD (1954) The identification, origin, and migration of the primordial germ cells in the
mouse embryo. Anat Rec 118(2):135–146
Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, Schier AF (2002) Production of
maternal-zygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci U S A
99(23):14919–14924. doi:10.1073/pnas.222459999
Claussen M, Pieler T (2004) Xvelo1 uses a novel 75-nucleotide signal sequence that drives vegetal
localization along the late pathway in Xenopus oocytes. Dev Biol 266(2):270–284
Claussen M, Tarbashevich K, Pieler T (2011) Functional dissection of the RNA signal sequence
responsible for vegetal localization of XGrip2.1 mRNA in Xenopus oocytes. RNA Biol
8(5):873–882. doi:10.4161/rna.8.5.16028
Collier B, Gorgoni B, Loveridge C, Cooke HJ, Gray NK (2005) The DAZL family proteins are
PABP-binding proteins that regulate translation in germ cells. EMBO J 24(14):2656–2666.
doi:10.1038/sj.emboj.7600738
Colozza G, De Robertis EM (2014) Maternal syntabulin is required for dorsal axis formation and
is a germ plasm component in Xenopus. Differentiation 88(1):17–26. doi:10.1016/j.
diff.2014.03.002
Coucouvanis E, Martin GR (1999) BMP signaling plays a role in visceral endoderm differentiation
and cavitation in the early mouse embryo. Development 126(3):535–546
Cox RT, Spradling AC (2009) Clueless, a conserved Drosophila gene required for mitochondrial
subcellular localization, interacts genetically with parkin. Dis Model Mech 2(9–10):490–499.
doi:10.1242/dmm.002378
Cuykendall TN, Houston DW (2009) Vegetally localized Xenopus trim36 regulates cortical rota-
tion and dorsal axis formation. Development 136(18):3057–3065. doi:10.1242/dev.036855
Cuykendall TN, Houston DW (2010) Identification of germ plasm-associated transcripts by micro-
array analysis of Xenopus vegetal cortex RNA. Dev Dyn 239(6):1838–1848. doi:10.1002/
dvdy.22304
Deshpande G, Calhoun G, Jinks TM, Polydorides AD, Schedl P (2005) Nanos downregulates
transcription and modulates CTD phosphorylation in the soma of early Drosophila embryos.
Mech Dev 122(5):645–657. doi:10.1016/j.mod.2004.12.009
Di Carlo A, De Felici M (2000) A role for E-cadherin in mouse primordial germ cell development.
Dev Biol 226(2):209–219. doi:10.1006/dbio.2000.9861
Distel M, Wullimann MF, Koster RW (2009) Optimized Gal4 genetics for permanent gene expres-
sion mapping in zebrafish. Proc Natl Acad Sci U S A 106(32):13365–13370. doi:10.1073/
pnas.0903060106
Dixon JE, Allegrucci C, Redwood C, Kump K, Bian Y, Chatfield J, Chen YH, Sottile V, Voss SR,
Alberio R, Johnson AD (2010) Axolotl Nanog activity in mouse embryonic stem cells demon-
strates that ground state pluripotency is conserved from urodele amphibians to mammals.
Development 137(18):2973–2980. doi:10.1242/dev.049262
Dong Z, Dong X, Jia W, Cao S, Zhao Q (2014) Improving the efficiency for generation of genome-
edited zebrafish by labeling primordial germ cells. Int J Biochem Cell Biol 55:329–334.
doi:10.1016/j.biocel.2014.08.020
Dosch R, Wagner DS, Mintzer KA, Runke G, Wiemelt AP, Mullins MC (2004) Maternal control
of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev
Cell 6(6):771–780. doi:10.1016/j.devcel.2004.05.002
Dziadek M, Dixon KE (1977) An autoradiographic analysis of nucleic acid synthesis in the pre-
sumptive primordial germ cells of Xenopus laevis. J Embryol Exp Morphol 37(1):13–31
Eddy EM (1975) Germ plasm and the differentiation of the germ cell line. Int Rev Cytol 43:229–280
Eddy EM, Clark JM, Gong D, Fenderson BA (1981) Origin and migration of primordial germ-cells
in mammals. Gamete Res 4(4):333–362
Ellis RE, Kimble J (1995) The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis
elegans. Genetics 139(2):561–577
Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans:
epigenesis and preformation. Development 130(24):5869–5884. doi:10.1242/dev.00804
8 Mechanisms of Vertebrate Germ Cell Determination