Vertebrate Development Maternal to Zygotic Control (Advances in Experimental Medicine and Biology)

(nextflipdebug2) #1
531

Potok ME, Nix DA, Parnell TJ, Cairns BR (2013) Reprogramming the maternal zebrafish genome
after fertilization to match the paternal methylation pattern. Cell 153(4):759–772. doi:10.1016/j.
cell.2013.04.030
Puschendorf M, Stein P, Oakeley EJ, Schultz RM, Peters AH, Svoboda P (2006) Abundant tran-
scripts from retrotransposons are unstable in fully grown mouse oocytes. Biochem Biophys
Res Commun 347(1):36–43
Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP,
Koseki H, Orkin SH, van Lohuizen M, Peters AH (2008) PRC1 and Suv39h specify parental
asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40(4):411–420.
doi:10.1038/ng.99
Radford HE, Meijer HA, de Moor CH (2008) Translational control by cytoplasmic polyadenyl-
ation in Xenopus oocytes. Biochim Biophys Acta 1779(4):217–229
Ramos SB, Stumpo DJ, Kennington EA, Phillips RS, Bock CB, Ribeiro-Neto F, Blackshear PJ
(2004) The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early
embryonic development. Development 131(19):4883–4893. doi:10.1242/dev.01336
Reverte CG, Ahearn MD, Hake LE (2001) CPEB degradation during Xenopus oocyte maturation
requires a PEST domain and the 26S proteasome. Dev Biol 231(2):447–458. doi:10.1006/
dbio.2001.0153
Richter JD (2007) CPEB: a life in translation. Trends Biochem Sci 32(6):279–285
Rivera RM, Ross JW (2013) Epigenetics in fertilization and preimplantation embryo development.
Prog Biophys Mol Biol 113(3):423–432. doi:10.1016/j.pbiomolbio.2013.02.001
Rougier N, Bourc'his D, Gomes DM, Niveleau A, Plachot M, Paldi A, Viegas-Pequignot E (1998)
Chromosome methylation patterns during mammalian preimplantation development. Genes
Dev 12(14):2108–2113
Sagata N, Shiokawa K, Yamana K (1980) A study on the steady-state population of poly(A) + RNA
during early development of Xenopus laevis. Dev Biol 77(2):431–448
Saitou M, Kurimoto K (2014) Paternal nucleosomes: are they retained in developmental promoters
or gene deserts? Dev Cell 30(1):6–8. doi:10.1016/j.devcel.2014.06.025
Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy
in C. elegans embryos. Science (New York, NY) 334(6059):1141–1144. doi:10.1126/
science.1210333
Sato M, Sato K (2013) Maternal inheritance of mitochondrial DNA by diverse mechanisms to
eliminate paternal mitochondrial DNA. Biochim Biophys Acta 1833(8):1979–1984.
doi:10.1016/j.bbamcr.2013.03.010
Schoenberg DR, Maquat LE (2012) Regulation of cytoplasmic mRNA decay. Nat Rev 13(4):246–



  1. doi:10.1038/nrg3160
    Schorderet-Slatkine S, Schorderet M, Baulieu EE (1982) Cyclic AMP-mediated control of meio-
    sis: effects of progesterone, cholera toxin, and membrane-active drugs in Xenopus laevis
    oocytes. Proc Natl Acad Sci U S A 79(3):850–854
    Schubeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–

  2. doi:10.1038/nature14192
    Schultz RM, Wassarman PM (1977) Biochemical studies of mammalian oogenesis: protein
    synthesis during oocyte growth and meiotic maturation in the mouse. J Cell Sci
    24:167–194
    Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med
    347(8):576–580. doi:10.1056/NEJMoa020350
    Setoyama D, Yamashita M, Sagata N (2007) Mechanism of degradation of CPEB during Xenopus
    oocyte maturation. Proc Natl Acad Sci U S A 104(46):18001–18006. doi:10.1073/
    pnas.0706952104
    Shalgi R, Magnus A, Jones R, Phillips DM (1994) Fate of sperm organelles during early embryo-
    genesis in the rat. Mol Reprod Dev 37(3):264–271. doi:10.1002/mrd.1080370304
    Sheets MD, Fox CA, Hunt T, Vande Woude G, Wickens M (1994) The 3′-untranslated regions of
    c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation.
    Genes Dev 8(8):926–938


10 Clearance of Parental Products

Free download pdf