50 M. H. Akabas
Kluger R, Tsui WC (1980) Amino group reactions of the sulfhydryl reagent methyl methanesul-
fonothioate. Inactivation of D-3-hydroxybutyrate dehydrogenase and reaction with amines in
water. Can J Biochem 58(8):629–632
Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK (2003a) Pore-lining resi-
dues identified by single channel SCAM studies in Cx46 hemichannels. Cell Commun Adhes
10(4–6):193–199
Kronengold J, Trexler EB, Bukauskas FF, Bargiello TA, Verselis VK (2003b) Single-channel
SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane
domains of Cx46 hemichannels. J Gen Physiol 122(4):389–405. doi:10.1085/jgp.200308861
Krovetz HS, VanDongen HM, VanDongen AM (1997) Atomic distance estimates from disulfides
and high-affinity metal-binding sites in a K+ channel pore. Biophys J 72(1):117–126
Kucken AM, Wagner DA, Ward PR, Teissere JA, Boileau AJ, Czajkowski C (2000) Identification
of benzodiazepine binding site residues in the gamma2 subunit of the gamma-aminobutyric
acid(A) receptor. Mol Pharmacol 57(5):932–939
Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA re-
ceptor channel M2 segment inferred from the accessibility of substituted cysteines. Neuron
17(2):343–352
Labriola JM, Pandhare A, Jansen M, Blanton MP, Corringer PJ, Baenziger JE (2013) Structural
sensitivity of a prokaryotic pentameric ligand-gated ion channel to its membrane environment.
J Biol Chem. doi:10.1074/jbc.M113.458133
Langenbuch-Cachat J, Bon C, Mulle C, Goeldner M, Hirth C, Changeux JP (1988) Photoaffinity
labeling of the acetylcholine binding sites on the nicotinic receptor by an aryldiazonium deriva-
tive. Biochemistry 27(7):2337–2345
Larsson HP, Baker OS, Dhillon DS, Isacoff EY (1996) Transmembrane movement of the shaker K+
channel S4. Neuron 16(2):387–397
Leonard RJ, Labarca CG, Charnet P, Davidson N, Lester HA (1988) Evidence that the M2
membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science
242(4885):1578–1581
Levin G, Blount P (2004) Cysteine scanning of MscL transmembrane domains reveals residues
critical for mechanosensitive channel gating. Biophys J 86(5):2862–2870. doi:10.1016/s0006-
3495(04)74338-6
Lewis SD, Johnson FA, Shafer JA (1976) Potentiometric determination of ionizations at the active
site of papain. Biochemistry 15(23):5009–5017
Lewis SD, Johnson FA, Ohno AK, Shafer JA (1978) Dependence of the catalytic activity of papain
on the ionization of two acidic groups. J Biol Chem 253(14):5080–5086
Li J, Xu Q, Cortes DM, Perozo E, Laskey A, Karlin A (2002) Reactions of cysteines substi-
tuted in the amphipathic N-terminal tail of a bacterial potassium channel with hydrophilic
and hydrophobic maleimides. Proc Natl Acad Sci U S A 99(18):11605–11610. doi:10.1073/
pnas.192439299 192439299 [pii]
Liu X, Zhang ZR, Fuller MD, Billingsley J, McCarty NA, Dawson DC (2004) CFTR: a cysteine at
position 338 in TM6 senses a positive electrostatic potential in the pore. Biophys J 87(6):3826–
- doi:10.1529/biophysj.104.050534
Liu X, Alexander C, Serrano J, Borg E, Dawson DC (2006) Variable reactivity of an engineered
cysteine at position 338 in cystic fibrosis transmembrane conductance regulator reflects differ-
ent chemical states of the thiol. J Biol Chem 281(12):8275–8285. doi:10.1074/jbc.M512458200
Liu Y, Jurman ME, Yellen G (1996) Dynamic rearrangement of the outer mouth of a K+ channel
during gating. Neuron 16(4):859–867
Lo Conte M, Carroll KS (2013) The redox biochemistry of protein sulfenylation and sulfinylation.
J Biol Chem 288(37):26480–26488. doi:10.1074/jbc.R113.467738
Loots E, Isacoff EY (1998) Protein rearrangements underlying slow inactivation of the Shaker K+
channel. J Gen Physiol 112(4):377–389
Lu J, Deutsch C (2001) Pegylation: a method for assessing topological accessibilities in Kv1.3.
Biochemistry 40(44):13288–13301