106 6 ART for Antiaging
Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension
by CR in Saccharomyces cerevisiae. Science 289:2126–2128
Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente
L (2002) CR extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature
418:344–348
Longo VD, Fontana L (2010) CR and cancer prevention: metabolic and molecular mechanisms.
Trends Pharmacol Sci 31:89–98
López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram
DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and
bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768–1773
Mason M, Nicholes GP, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration
involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxi-
dase. Proc Natl Acad Sci USA 103:708–713
Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB,
Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of calo-
rie restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321
Mesquita A, Weinberger M, Silva A, Sampaio-Marques B, Almeida B, Leão C, Costa V,
Rodrigues F, Burhans WC, Ludovico P (2010) Caloric restriction or catalase inactivation
extends yeast chronological lifespan by inducing hydrogen peroxide and SOD activity. Proc
Natl Acad Sci USA 107:15123–15128
Miller BF, Robinson MM, Bruss MD, Hellerstein M, Hamilton KL (2012) A comprehensive
assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric
restriction. Aging Cell 11:150–161
Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi
L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Calorie
restriction and resveratrol promote longevity through the SIRT-1-dependent induction of
autophagy. Cell Death Dis 1:e10
Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A,
Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the
role of endogenous nitric oxide. Science 299:896–899
Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile
A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial
biogenesis by nitric oxide yields functionally active mitochondria in mammals. Proc Natl
Acad Sci USA 101:16507–16512
Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni
O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial
biogenesis by inducing the expression of eNOS. Science 310:314–317
Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci
119:2855–2862
Pan Y, Shadel GS (2009) Extension of chronological life span by reduced TOR signaling requires
downregulation of Sch9p and involves increased mitochondrial OXPHOS complex density.
Aging 1:131–145
Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS (2011) Regulation of yeast chronolog-
ical life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab 13:668–678
Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of
mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119
Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown AL,
Kim MK, Beaven MA, Burgin AB, Manganiello V, Chung JH (2012) Resveratrol ameliorates
aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148:421–433
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001)
Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions.
Endocr Rev 22:153–183
Pervin S, Singh R, Hernandez E,Wu G, Chaudhuri G (2007) Nitric oxide in physiologic concentra-
tions targets the translational machinery to increase the proliferation of human breast cancer
cells: involvement of mammalian target of rapamycin/eIF4E pathway. Cancer Res 67:289–299