Artemisinin and Nitric Oxide Mechanisms and Implications in Disease and Health

(Darren Dugan) #1
25

Balsa E, Marco R, Perales-Clemente E, Szklarczyk R, Calvo E, Landázuri MO, Enríquez JA
(2012) NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell
Metab 16:378–386
Bao F, Wu P, Xiao N, Qiu F, Zeng QP (2012) Nitric oxide-driven hypoxia initiates synovial angi-
ogenesis, hyperplasia and inflammatory lesions in mice. PLoS ONE 7:e34494
Beekman AC, Barentsen ARW, Woerdenbag HJ, van Uden W, Pras N, El-Feraly FS, Galal AM
(1997) Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod
60:325–327
Beekman AC, Wierenga P, Woerdenbag HJ, van Uden W, Pras N, Konings A, El-Feraly FS,
Galal AM, Wikstrom HV (1998) TI: artemisinin-derived sesquiterpene lactones as potential
antitumour compounds: cytotoxic action against bone marrow and tumour cells. Plant Med
64:615–619
Bousejra-El GF, Claparols C, Benoit-Vical F, Meunier B, Robert A (2008) The antimalarial tri-
oxaquine DU1301 alkylates heme in malaria-infected mice. Antimicrob Agents Chemother
52:2966–2969
Boveris A, Carreras MC, Poderoso JJ (2010) The regulation of cell energetics and mitochondrial
signaling by nitric oxide. In: Ignarro LJ (ed) Nitric oxide: biology and pathobiology, 2nd edn.
Elsevier, Amsterdam
Brooks PS, Kraus DW, Shiva S, Doeller JE, Barone MC, Patel RP, Lancaster JRJ, Darley-Usmar
V (2003) Control of mitochondrial respiration by nitric oxide, effects of low oxygen and res-
piratory state. J Biol Chem 278:31603–31609
Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit
synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett
356:295-298
Buddi R, Lin B, Atilano SR, Zorapapel NC, Kenney MC, Brown DJ (2002) Evidence of oxida-
tive stress in human corneal diseases. J Histochem Cytochem 50:341–351
Cabello CM, Lamore SD, Bair WB 3rd, Qiao S, Azimian S, Lesson JL, Wondrak GT (2011)
The redox antimalarial dihydroartemisinin targets human metastatic melanoma cells but
not primary melanocytes with induction of NOXA-dependent apoptosis. Invest New Drugs
30:1289–1301
Castello PR, David PS, McClure T, Crook Z, Payton RO (2006) Mitochondrial cytochrome
c oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing
and hypoxic signaling in eukaryotes. Cell Metabol 3:277–287
Cazelles J, Robert A, Meunier B (2001) Alkylation of heme by artemisinin, an antimalarial drug.
Comptes Rendus De L Academie Des Sciences Serie Ii Fascicule C-Chimie 4:85–89
Chen ZT, Huang ZY, Wu LY, Zeng QP (2000) Artemisinin-mediated apoptosis in hepatoma cells.
Chin J Integr Trad West Med Liver Dis 10:23–25
Chen Z, Foster MW, Zhang J, Mao L, Rockman HA, Kawamoto T, Kitagawa K, Nakayama K,
Hess DT, Stamler JS (2005) An essential role for mitochondrial aldehyde dehydrogenase in
nitroglycerin bioactivation. Proc Natl Acad Sci USA 102:12159–12164
Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH (1994) Reversible inhibi-
tion of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain,
bynitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50-54
Corker H, Poole RK (2003) Nitric oxide formation by Escherichia coli: dependence on nitrite
reductase, the nitric oxide-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem
278:31584–31592
Corpas FJ, Barroso JB, Del Rio LA (2004) Enzymatic sources of nitric oxide in plant cells—
beyond one protein–one function. New Phytol 162:246–247
Creek DJ, Charman WN, Chiu FCK, Prankerd RJ, Dong Y, Vennerstrom JL, Charman SA
(2008) Relationship between antimalarial activity and heme alkylation. Antimicrob Agents
Chemother 52:1291–1296
de Luca C, Olefsky JM (2008) Inflammation and insulin resistance. FEBS Lett 582:97–105


References

Free download pdf