Artemisinin and Nitric Oxide Mechanisms and Implications in Disease and Health

(Darren Dugan) #1
51

Hawkey PM (2008) Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin
Microbiol Infect 14:159–165
Kono Y, Shibata H, Adachi K, Tanaka K (1994) Lactate-dependent killing of Escherichia coli by
nitrite plus hydrogen peroxide: a possible role of nitrogen dioxide. Arch Biochem Biophys
311:153–159
Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing impor-
tance in medicine. Trends Pharmacol Sci 29:520–527
Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary
U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S,
Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M,
Sheridan E, Thirunarayan MA, Turton J, Upadhyay S,Warner M, Welfare W, Livermore
DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in
India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet
Infect Dis 10:597–602
Li B, Yao Q, Pan XC, Wang N, Zhang R, Li J, Ding G, Liu X, Wu C, Ran D, Zheng J, Zhou
H (2011) Artesunate enhances the antibacterial effect of β-lactam antibiotics against
Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux
pump system AcrABTolC. J Antimicrob Chemother 66:769–777
Patel BA, Crane B (2010) When it comes to antibiotics, bacteria show some NO how. J Mol Cell
Biol 2:234–236
Patel BA, Moreau M, Widom J, Chen H, Yin LF, Hua YJ, Crane BR (2009) Endogenous
nitric oxide regulates the recovery of the radiation-resistant bacterium Deinococcus radio-
durans from exposure to UV light. Proc Natl Acad Sci USA 106:18183–18188
Plate L, Marletta MA (2012) NO modulates bacterial biofilm formation through a multicompo-
nent cyclic-di-GMP signaling network. Mol Cell 46:449–460
Raviglione MC (2007) The new stop TB strategy and the global plan to stop TB, 2006–



  1. Bull World Health Organ 85:327
    Robert A, Benoit-Vical F, Claparols C, Meunier B (2005) The antimalarial drug artemisinin
    alkylates heme in infected mice. Proc Natl Acad Sci USA 102:13676–13680
    Taylor CT, Moncada S (2010) Nitric oxide, cytochrome c oxidase, and the cellular response to
    hypoxia. Arterioscler Thromb Vasc Biol 30:643–647
    Vallance P, Charles I (1998) Nitric oxide as an antimicrobial agent: does NO always mean NO?
    Gut 42:313–314
    van Wonderen JH, Burlat B, Richardson DJ, Cheesman MR, Butt JN (2008) The nitric
    oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli. J Biol Chem
    283:9587–9594
    Walsh TR, Toleman MA, Jones RN (2007) Comment on: occurrence, prevalence and
    genetic environment of CTX-M beta-lactamases in Enterobacteriaceae from Indian hospi-
    tals. J Antimicrob Chemother 59:799–800
    Woodmansee AN, Imlay JA (2002) Reduced flavins promote oxidative DNA damage in non-
    respiring Escherichia coli by delivering electrons to intracellular free iron. J Biol Chem
    277:34055–34066
    Wyatt MA, Wang W, Roux CM, Beasley FC, Heinrichs DE, Dunman PM, Magarvey NA
    (2010) Staphylococcus aureus non-ribosomal peptide secondary metabolites regulate viru-
    lence. Science 329:294–296
    Zeng QP, Zhang PZ (2011) Artemisinin mitigates proliferation of tumor cells by alkylating
    heme-harboring nitric oxide synthase. Nitric Oxide 24:110–112
    Zeng QP, Xiao N, Wu P, Yang XQ, Zeng LX, Guo XX, Zhang PZ, Qiu F (2011) Artesunate
    potentiates antibiotics by inactivating bacterial heme-harbouring nitric oxide synthase and
    catalase. BMC Res Notes 4:223
    Zhang S, Gerhard GS (2009) Heme mediates cytotoxicity from artemisinin and serves as a gen-
    eral anti-proliferation target. PLoS ONE 4:e7472


References

Free download pdf