276 – II.3. BRASSICA CROPS (BRASSICA SPP.)
Sadik, S. (1962), “Morphology of the curd of cauliflower”, American Journal of Botany, Vol. 49,
pp. 290-297.
Saji, H. et al. (2005), “Monitoring the escape of transgenic oilseed rape around Japanese ports and
roadsides”, Environmental Biosafety Research, Vol. 4, No. 4, pp. 217-222, December.
Sakai, T. et al. (1996), “Introduction of a gene from fertility restored radish (Raphanus sativus)
into Brassica napus by fusion of X-irradiated protoplasts from a radish restorer line and
iodacetoamide-treated protoplasts from a cytoplasmic male-sterile cybrid of B. napus”,
Theoretical and Applied Genetics, Vol. 93, No. 3, pp. 73-379, August,
http://dx.doi.org/10.1007/BF00223179.
Sakhno, L.O. et al. (2007), “Phosphinothricin-resistant Brassica napus + Orychophragmus
violaceus somatic hybrids”, Cytology and Genetics, Vol. 41, No. 1, pp. 1-5.
Salisbury, P. (2002), Genetically Modified Canola in Australia: Agronomic and Environmental
Considerations, Downey, R.K. (ed.), Australian Oilseeds Federation.
Sarwar, M. and J.A. Kirkegaard (1998), “Biofumigation potential of Brassicas II. Effect of
environment and ontogeny on glucosinolate production and implications for screening”, Plant
and Soil, Vol. 201, No. 1, pp. 91-101.
Sauer, J.D. (1993), Historical Geography of Crop Plants, CRC Press, Boca Raton, Florida.
Sauermann, W. (1987), “Entwicklung des Glucosinolatgehalts von 00-Raps in den Nängigkeit
vom Fremddurchwuchs”, Raps, Vol. 5, pp. 12-13.
Scarth, R., S.R. Rimmer and P.B.E. McVetty (1995), “Apollo low linolenic summer rape”,
Canadian J. of Plant Science, Vol. 75, No. 1, pp. 203-204, http://dx.doi.org/10.4141/cjps95-037.
Scarth, R. et al. (1988), “Stellar low linolenic high linoleic acid summer rape”, Canadian Journal
of Plant Science, Vol. 68, No. 2, pp. 509-511, http://dx.doi.org/10.4141/cjps88-061.
Schafer, E.H. (1977), “T’ang”, in: Chang, K.C. (ed.), Food in Chinese Culture, Yale University
Press, New Haven, Connecticut.
Scheffler, J.A. and P.J. Dale (1994), “Opportunities for gene transfer from transgenic oilseed rape
(Brassica napus) to related species”, Transgenic Research, Vol. 3, No. 5, pp. 263-278.
Scheffler J.A., R. Parkinson and P.J. Dale (1995), “Evaluating the effectiveness of isolation distances
for field plots of oilseed rape (Brassica napus) using a herbicide-resistance transgene as a
selectable marker”, Plant Breeding, Vol. 114, No. 4, pp. 317-321, August,
http://dx.doi.org/10.1111/j.1439-0523.1995.tb01241.x.
Scheffler, J.A., R. Parkinson and P.J. Dale (1993), “Frequency and distance of pollen dispersal
from transgenic oilseed rape (Brassica napus)”, Transgenic Research, Vol. 2, No. 6,
pp. 356-364, November.
Schiemann, E. (1932), Entstehung der Kulurpflanzen, Hadb. Vererbwis. Lfg., Vol. 15.
Schlink, S. (1998), “10 year survival of rape seed (Brassica napus L.) in soil”, Zeitschrift für
Pflanzenkrankheiten und Pflanzenschutz, Sonderheft, Vol. XVI, pp. 169-172.
Schlink, S. (1995), “Überdauerungsvermögen und Dormanz von Rapssamen (Brassica napus L.)
im Boden”, 9th European Weed Research Society Symposium, Budapest, Doorwerth,
Netherlands, European Weed Research Society, pp. 65-73.
Schröder-Pontoppidan, M. et al. (1999), “Very long chain and hydroxylated fatty acids in offspring
of somatic hybrids between Brassica napus and Lesquerella fendleri”, Theoretical and Applied
Genetics, Vol. 99, No. 1, pp. 108-114, July.
Schulz, O.E. (1936), “Cruciferae”, in: Engler, A. and H. Harms (eds.), Die Natürlichen
Pflanzenfamilien, 2nd edition, 17B, Leipzig, pp. 227-658.