Gustafsson T, Puntschart A, Kaijser L et al (1999) Exercise-induced expression of angiogenesis-
related transcription and growth factors in human skeletal muscle. Am J Physiol Heart Circ
Physiol 276:H679–H685
Stegmann TJ (1999) New approaches to coronary heart disease: induction of neovascularisa-
tion by growth factors. BioDrugs 11(5):301–308
Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific recep-
tor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev
13(9):1055–1066
Valenzuela DM, Griffiths JA, Rojas J et al (1999) Angiopoietins 3 and 4: diverging gene coun-
terparts in mice and humans. Proc Natl Acad Sci USA 1999 96(5):1904–1909
Larouche JF, Yu C, Luo X et al (2015) Acute high-intensity intermittent aerobic exercise
reduces plasma angiopoietin-like 2 in patients with coronary artery disease. Can J Cardiol
31(10):1232–1239
Huang Y, Fang C, Guo H et al (2016) Increased angiopoietin-like protein 8 levels in patients
with type 2 diabetes and cardiovascular disease. Diabetes Res Clin Pract 120:229–231
Kersten S, Lichtenstein L, Steenbergen E et al (2009) Caloric restriction and exercise increase
plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc
Biol 29(6):969–974
Laughlin MH, Welshons WV, Sturek M et al (2003) Gender, exercise training, and eNOS
expression in porcine skeletal muscle arteries. J Appl Physiol 95:250–264
Gielen S, Sandri M, Erbs S et al (2011) Exercise-induced modulation of endothelial nitric
oxide production. Curr Pharm Biotechnol 12(9):1375–1384
Laufs U, Werner N, Link A et al (2004) Physical training increases endothelial progenitor
cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109(2):220–226
Baggish AL, Park J, Min PK et al (2014) Rapid upregulation and clearance of distinct circulat-
ing microRNAs after prolonged aerobic exercise. J Appl Physiol 116(5):522–531
Da Silva ND Jr, Fernandes T, Soci UP et al (2012) Swimming training in rats increases cardiac
MicroRNA-126 expression and angiogenesis. Med Sci Sports Exerc 44(8):1453–1462
Nikolic I, Plate KH, Schmidt MH (2010) EGFL7 meets miRNA-126: an angiogenesis alliance.
J Angiogenes Res 2(1):9
Ge HY, Han ZJ, Tian P et al (2015) VEGFA expression is inhibited by arsenic trioxide in
HUVECs through the upregulation of Ets-2 and miRNA-126. PLoS One 10(8):e0135795
Soufi-Zomorrod M, Hajifathali A, Kouhkan F et al (2016) MicroRNAs modulating angiogen-
esis: miR-129-1 and miR-133 act as angio-miR in HUVECs. Tumour Biol 37(7):9527–9534
Icli B, Wara AK, Moslehi J et al (2013) MicroRNA-26a regulates pathological and physiologi-
cal angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 113(11):1231–1241
Rychli K, Kaun C, Hohensinner PJ et al (2010) The anti-angiogenic factor PEDF is present
in the human heart and is regulated by anoxia in cardiac myocytes and fibroblasts. J Cell Mol
Med 14(1–2):198–205
Bozaoglu K, Curran JE, Stocker CJ et al (2010) Chemerin, a novel adipokine in the regulation
of angiogenesis. J Clin Endocrinol Metab 95(5):2476–2485
Ellison GM, Waring CD, Vicinanza C et al (2012) Physiological cardiac remodelling in
response to endurance exercise training: cellular and molecular mechanisms. Heart 98(1):5–10
Yamashita T, Abe K (2012) Mechanisms of endogenous endothelial repair in stroke. Curr
Pharm Des 18(25):3649–3652
Black MA, Cable NT, Thijssen DH et al (2009) Impact of age, sex, and exercise on brachial
artery flow-mediated dilatation. Am J Physiol Heart Circ Physiol 297(3):H1109–H1116
Leone AM, Valgimigli M, Giannico MB et al (2009) From bone marrow to the arterial wall:
the ongoing tale of endothelial progenitor cells. Eur Heart J 30(8):890–899
Li Calzi S, Neu MB, Shaw LC et al (2010) EPCs and pathological angiogenesis: when good
cells go bad. Microvasc Res 79(3):207–216
Asano M, Kaneoka K, Nomura T et al (1998) Increase in serum vascular endothelial growth
factor levels during altitude training. Acta Physiol Scand 162(4):455–459