301
- Masson S, Arosio B, Luvarà G et al (1998) Remodelling of cardiac extracellular matrix dur-
ing beta-adrenergic stimulation: upregulation of SPARC in the myocardium of adult rats.
J Mol Cell Cardiol 3(8):1505–1514 - Hesse IF, Johns EJ (1985) The role of alpha-adrenoceptors in the regulation of renal tubular
sodium reabsorption and renin secretion in the rabbit. Br J Pharmacol 84(3):715–724 - Wade JG, Larson CP, Hickey RF et al (1970) Effect of carotid endarterectomy on carotid
chemoreceptor and baroreceptor function in man. N Engl J Med 282(15):823–829 - Wyatt CN, Mustard KJ, Pearson SA et al (2007) AMP-activated protein kinase mediates
carotid body excitation by hypoxia. J Biol Chem 282(11):8092–8098 - Prabhakar NR (2006) O2 sensing at the mammalian carotid body: why multiple O2 sensors
and multiple transmitters? Exp Physiol 91(1):17–23 - Wong-Riley MT, Liu Q, Gao XP (2013) Peripheral-central chemoreceptor interaction and
the significance of a critical period in the development of respiratory control. Respir Physiol
Neurobiol 185(1):156–169 - Shell B, Faulk K, Cunningham JT (2016) Neural control of blood pressure in chronic inter-
mittent hypoxia. Curr Hypertens Rep 18(3):19 - Przybylski J, Trzebski A, Przybyszewski A (1980) Circulatory responses to acute hypoxia in
spontaneously hypertensive and normotensive rats. Acta Physiol Pol 31(5):463–468 - Abdala AP, McBryde FD, Marina N et al (2012) Hypertension is critically dependent on the
carotid body input in the spontaneously hypertensive rat. J Physiol 590(17):4269–4277 - Simms AE, Paton JF, Pickering AE et al (2009) Amplified respiratory-sympathetic cou-
pling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol
587(3):597–610 - Tan ZY, Lu Y, Whiteis CA et al (2010) Chemoreceptor hypersensitivity, sympathetic excita-
tion, and overexpression of ASIC and TASK channels before the onset of hypertension in
SHR. Circ Res 106(3):536–545 - McBryde FD, Abdala AP, Hendy EB et al (2013) The carotid body as a putative therapeutic
target for the treatment of neurogenic hypertension. Nat Commun 4:2395 - Cao X, Peterson JR, Wang G et al (2012) Angiotensin II-dependent hypertension requires
cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical
organ of the brain. Hypertension 59(4):869–876 - Capone C, Faraco G, Peterson JR et al (2012) Central cardiovascular circuits contribute to the
neurovascular dysfunction in angiotensin II hypertension. J Neurosci 32(14):4878–4886 - Lob HE, Schultz D, Marvar PJ et al (2013) Role of the NADPH oxidases in the subfornical
organ in angiotensin II-induced hypertension. Hypertension 61(2):382–387 - Wang G, Coleman CG, Chan J et al (2013) Angiotensin II slow-pressor hypertension enhances
NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricu-
lar neurons. Am J Physiol Regul Integr Comp Physiol 304(12):R1096–R1106 - Zimmerman MC, Sharma RV, Davisson RL (2005) Superoxide mediates angiotensin
II-induced influx of extracellular calcium in neural cells. Hypertension 45(4):717–723 - Agarwal D, Welsch MA, Keller JN et al (2011) Chronic exercise modulates RAS compo-
nents and improves balance between pro- and anti-inflammatory cytokines in the brain of
SHR. Basic Res Cardiol 106(6):1069–1085 - Cardinale JP, Sriramula S, Mariappan N et al (2012) Angiotensin II-induced hypertension is
modulated by nuclear factor-κBin the paraventricular nucleus. Hypertension 59(1):113–121 - Coleman CG, Wang G, Faraco G et al (2013) Membrane trafficking of NADPH oxidase
p47(phox) in paraventricular hypothalamic neurons parallels local free radical production in
angiotensin II slow-pressor hypertension. J Neurosci 33(10):4308–4316 - Kang YM, Ma Y, Zheng JP et al (2009) Brain nuclear factor-kappa B activation contrib-
utes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res
82(3):503–512 - Wang G, Sarkar P, Peterson JR et al (2013) COX-1-derived PGE2 and PGE2 type 1 receptors
are vital for angiotensin II-induced formation of reactive oxygen species and Ca(2+) influx in
the subfornical organ. Am J Physiol Heart Circ Physiol 305(10):H1451–H1461
16 Experimental Evidences Supporting Training-Induced Benefits in Spontaneously...