Exercise for Cardiovascular Disease Prevention and Treatment From Molecular to Clinical, Part 1

(Elle) #1

301



  1. Masson S, Arosio B, Luvarà G et al (1998) Remodelling of cardiac extracellular matrix dur-
    ing beta-adrenergic stimulation: upregulation of SPARC in the myocardium of adult rats.
    J Mol Cell Cardiol 3(8):1505–1514

  2. Hesse IF, Johns EJ (1985) The role of alpha-adrenoceptors in the regulation of renal tubular
    sodium reabsorption and renin secretion in the rabbit. Br J Pharmacol 84(3):715–724

  3. Wade JG, Larson CP, Hickey RF et al (1970) Effect of carotid endarterectomy on carotid
    chemoreceptor and baroreceptor function in man. N Engl J Med 282(15):823–829

  4. Wyatt CN, Mustard KJ, Pearson SA et  al (2007) AMP-activated protein kinase mediates
    carotid body excitation by hypoxia. J Biol Chem 282(11):8092–8098

  5. Prabhakar NR (2006) O2 sensing at the mammalian carotid body: why multiple O2 sensors
    and multiple transmitters? Exp Physiol 91(1):17–23

  6. Wong-Riley MT, Liu Q, Gao XP (2013) Peripheral-central chemoreceptor interaction and
    the significance of a critical period in the development of respiratory control. Respir Physiol
    Neurobiol 185(1):156–169

  7. Shell B, Faulk K, Cunningham JT (2016) Neural control of blood pressure in chronic inter-
    mittent hypoxia. Curr Hypertens Rep 18(3):19

  8. Przybylski J, Trzebski A, Przybyszewski A (1980) Circulatory responses to acute hypoxia in
    spontaneously hypertensive and normotensive rats. Acta Physiol Pol 31(5):463–468

  9. Abdala AP, McBryde FD, Marina N et al (2012) Hypertension is critically dependent on the
    carotid body input in the spontaneously hypertensive rat. J Physiol 590(17):4269–4277

  10. Simms AE, Paton JF, Pickering AE et  al (2009) Amplified respiratory-sympathetic cou-
    pling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol
    587(3):597–610

  11. Tan ZY, Lu Y, Whiteis CA et al (2010) Chemoreceptor hypersensitivity, sympathetic excita-
    tion, and overexpression of ASIC and TASK channels before the onset of hypertension in
    SHR. Circ Res 106(3):536–545

  12. McBryde FD, Abdala AP, Hendy EB et al (2013) The carotid body as a putative therapeutic
    target for the treatment of neurogenic hypertension. Nat Commun 4:2395

  13. Cao X, Peterson JR, Wang G et al (2012) Angiotensin II-dependent hypertension requires
    cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical
    organ of the brain. Hypertension 59(4):869–876

  14. Capone C, Faraco G, Peterson JR et al (2012) Central cardiovascular circuits contribute to the
    neurovascular dysfunction in angiotensin II hypertension. J Neurosci 32(14):4878–4886

  15. Lob HE, Schultz D, Marvar PJ et al (2013) Role of the NADPH oxidases in the subfornical
    organ in angiotensin II-induced hypertension. Hypertension 61(2):382–387

  16. Wang G, Coleman CG, Chan J et al (2013) Angiotensin II slow-pressor hypertension enhances
    NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricu-
    lar neurons. Am J Physiol Regul Integr Comp Physiol 304(12):R1096–R1106

  17. Zimmerman MC, Sharma RV, Davisson RL (2005) Superoxide mediates angiotensin
    II-induced influx of extracellular calcium in neural cells. Hypertension 45(4):717–723

  18. Agarwal D, Welsch MA, Keller JN et al (2011) Chronic exercise modulates RAS compo-
    nents and improves balance between pro- and anti-inflammatory cytokines in the brain of
    SHR. Basic Res Cardiol 106(6):1069–1085

  19. Cardinale JP, Sriramula S, Mariappan N et al (2012) Angiotensin II-induced hypertension is
    modulated by nuclear factor-κBin the paraventricular nucleus. Hypertension 59(1):113–121

  20. Coleman CG, Wang G, Faraco G et  al (2013) Membrane trafficking of NADPH oxidase
    p47(phox) in paraventricular hypothalamic neurons parallels local free radical production in
    angiotensin II slow-pressor hypertension. J Neurosci 33(10):4308–4316

  21. Kang YM, Ma Y, Zheng JP et al (2009) Brain nuclear factor-kappa B activation contrib-
    utes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovasc Res
    82(3):503–512

  22. Wang G, Sarkar P, Peterson JR et al (2013) COX-1-derived PGE2 and PGE2 type 1 receptors
    are vital for angiotensin II-induced formation of reactive oxygen species and Ca(2+) influx in
    the subfornical organ. Am J Physiol Heart Circ Physiol 305(10):H1451–H1461


16 Experimental Evidences Supporting Training-Induced Benefits in Spontaneously...

Free download pdf