Clarke BL (2011) FGF23 regulation of phosphorus homeostasis is dependent on
PTH. Endocrinology 152(11):4016–4018
Martin A, Liu S, David V et al (2011) Bone proteins PHEX and DMP1 regulate fibroblas-
tic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF
receptor (FGFR) signaling. FASEB J 25(8):2551–2562
Qi Z, Liu W, Lu J (2016) The mechanisms underlying the beneficial effects of exercise on
bone remodeling: roles of bone-derived cytokines and microRNAs. Prog Biophys Mol Biol
122(2):131–139
Cuevas-Ramos D, Aguilar-Salinas CA (2016) Modulation of energy balance by fibroblast
growth factor 21. Horm Mol Biol Clin Investig. doi:10.1515/hmbci-2016-0023
Gunes V, Atalan G, Citil M et al (2008) Use of cardiac troponin kits for the qualitative deter-
mination of myocardial cell damage due to traumatic reticuloperitonitis in cattle. Vet Rec
162(16):514–517
Panteghini M, Bonora R, Pagani F et al (1997) Rapid, highly sensitive immunoassay for deter-
mination of cardiac troponin I in patients with myocardial cell damage. Clin Chem 43(8 Pt
1):1464–1465
Rottbauer W, Greten T, Muller-Bardorff M, et al (1996) Troponin T: a diagnostic marker for
myocardial infarction and minor cardiac cell damage. Eur heart J 17 Suppl F:3-8
Katus HA, Schoeppenthau M, Tanzeem A et al (1991) Non-invasive assessment of periopera-
tive myocardial cell damage by circulating cardiac troponin T. Br Heart J 65(5):259–264
Gresslien T, Agewall S (2016) Troponin and exercise. Int J Cardiol 221:609–621
Stewart GM, Yamada A, Haseler LJ et al (2016) Influence of exercise intensity and duration on
functional and biochemical perturbations in the human heart. J Physiol 594(11):3031–3044
Olah A, Nemeth BT, Matyas C et al (2015) Cardiac effects of acute exhaustive exercise in a rat
model. Int J Cardiol 182:258–266
Li T, Zhu D, Zhou R et al (2012) HBOC attenuates intense exercise-induced cardiac dysfunc-
tion. Int J Sports Med 33(5):338–345
Lee G, Twerenbold R, Tanglay Y et al (2016) Clinical benefit of high-sensitivity cardiac tropo-
nin I in the detection of exercise-induced myocardial ischemia. Am Heart J 173:8–17
Tsoutsman T, Chung J, Doolan A et al (2006) Molecular insights from a novel cardiac troponin
I mouse model of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 41(4):623–632
Romano S, di Mauro M, Fratini S et al (2011) Serial BNP assay in monitoring exercise toler-
ance in patients with diastolic dysfunction. Int J Cardiol 147(2):312–313
Pascual-Figal DA, Penafiel P, Nicolas F et al (2008) Prognostic value of BNP and cardiopul-
monary exercise testing in patients with systolic heart failure on beta-blocker therapy. Rev Esp
Cardiol 61(3):260–268
Ciampi Q, Borzillo G, Barbato E et al (2009) Diastolic function and BNP changes during
exercise predict oxygen consumption in chronic heart failure patients. Scand Cardiovasc
J 43(1):17–23
Lindman BR (2014) BNP during exercise: a novel use for a familiar biomarker in aortic steno-
sis. Heart 100(20):1567–1568
Aengevaeren VL, Hopman MT, Thijssen DH et al (2017) Endurance exercise-induced changes
in BNP concentrations in cardiovascular patients versus healthy controls. Int J Cardiol
227:430–435
Smart NA, Steele M (2010) Systematic review of the effect of aerobic and resistance exercise
training on systemic brain natriuretic peptide (BNP) and N-terminal BNP expression in heart
failure patients. Int J Cardiol 140(3):260–265
Montoye HJ, Mikkelsen WH, Willis PW 3rd et al (1975) Serum uric acid, body fatness, and
heart rate response to exercise. Med Sci Sports 7(3):233–236
Sanchis-Gomar F, Salvagno GL, Lippi G (2014) Inhibition of xanthine oxidase and exercise on
serum uric acid, 25(OH)D3, and calcium concentrations. Clin Lab 60(8):1409–1411
Green HJ, Fraser IG (1988) Differential effects of exercise intensity on serum uric acid con-
centration. Med Sci Sports Exerc 20(1):55–59