Exercise for Cardiovascular Disease Prevention and Treatment From Molecular to Clinical, Part 1

(Elle) #1

68


References



  1. Wang Y, Wisloff U, Kemi OJ (2010) Animal models in the study of exercise-induced cardiac
    hypertrophy. Physiol Res 59(5):633–644

  2. Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hyper-
    trophy. Cardiovasc Res 39(1):60–76

  3. James HJ (2007) Resource book for the design of animal exercise protocols. Am J Vet Res
    68(6):853

  4. Byrne MJ, Raman JS, Alferness CA et  al (2002) An ovine model of tachycardia-induced
    degenerative dilated cardiomyopathy and heart failure with prolonged onset. J  Card Fail
    8(2):108–115

  5. Billman GE (2006) A comprehensive review and analysis of 25 years of data from an in vivo
    canine model of sudden cardiac death: implications for future anti-arrhythmic drug develop-
    ment. Pharmacol Ther 111(3):808–835

  6. Milani-Nejad N, Janssen PML (2014) Small and large animal models in cardiac contraction
    research: advantages and disadvantages. Pharmacol Ther 141(3):235–249

  7. DiVincenti L, Westcott R, Lee C (2014) Sheep (Ovis Aries) as a model for cardiovascular
    surgery and management before, during, and after cardiopulmonary bypass. J Am Assoc Lab
    Anim Sci: JAALAS 53(5):439–448

  8. Voss MW, Vivar C, Kramer AF et al (2013) Bridging animal and human models of exercise-
    induced brain plasticity. Trends Cogn Sci 17(10):525–544

  9. Bernstein D (2003) Exercise assessment of transgenic models of human cardiovascular dis-
    ease. Physiol Genomics 13(3):217–226

  10. Desai KH, Sato R, Schauble E et al (1997) Cardiovascular indexes in the mouse at rest and
    with exercise: new tools to study models of cardiac disease. Am J Physiol Heart Circ Physiol
    272(2):1053–1061

  11. Seo DY, Lee SR, Kim N et al (2014) Humanized animal exercise model for clinical implica-
    tion. Pflugers Arch 466(9):1673–1687

  12. Hoydal MA, Wisloff U, Kemi OJ et al (2007) Running speed and maximal oxygen uptake
    in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil
    14(6):753–760

  13. Delp MD, Armstrong RB, Godfrey DA et al (2001) Exercise increases blood flow to locomo-
    tor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. J Physiol
    533(Pt 3):849–859

  14. Janssen PM, Zeitz O, Keweloh B et al (2000) Influence of cyclosporine a on contractile func-
    tion, calcium handling, and energetics in isolated human and rabbit myocardium. Cardiovasc
    Res 47(1):99–107

  15. Billman GE (2005) In-vivo models of arrhythmias: a canine model of sudden cardiac death. In:
    Practical methods in cardiovascular research. Berlin, Heidelberg Springer, pp 111–128

  16. Barron BA, Laughlin MH, Gwirtz PA (1997) Exercise effect on canine and miniswine cardiac
    catecholamines and enkephalins. Med Sci Sports Exerc 29(10):1338–1343

  17. De Bono JP, Adlam D, Paterson DJ et al (2006) Novel quantitative phenotypes of exercise
    training in mouse models. Am J Physiol Regul Integr Comp Physiol 290(4):926–934

  18. Demirel HA, Powers SK, Zergeroglu MA et al (1985) Short-term exercise improves myocar-
    dial tolerance to in vivo ischemia-reperfusion in the rat. J Appl Physiol 91(5):2205–2212

  19. Billman GE, Schwartz PJ, Stone HL (1984) The effects of daily exercise on susceptibility to
    sudden cardiac death. Circulation 69(6):1182–1189

  20. Wang S, Ma JZ, Zhu SS et al (2008) Swimming training can affect intrinsic calcium current
    characteristics in rat myocardium. Eur J Appl Physiol 104(3):549–555

  21. Medeiros A, Oliveira EM, Gianolla R et al (2004) Swimming training increases cardiac vagal
    activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res 37:1909–1917


V.T. Thu et al.
Free download pdf