Exercise for Cardiovascular Disease Prevention and Treatment From Molecular to Clinical, Part 1

(Elle) #1

89



  1. Wisloff U, Loennechen JP, Currie S et al (2002) Aerobic exercise reduces cardiomyocyte
    hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial
    infarction. Cardiovasc Res 54(1):162–174

  2. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205

  3. Vangheluwe P, Sipido KR, Raeymaekers L et  al (2006) New perspectives on the role of
    SERCA2’s Ca2+ affinity in cardiac function. Biochim Biophys Acta 1763(11):1216–1228

  4. Kemi OJ, Ellingsen O, Smith GL et al (2008) Exercise-induced changes in calcium handling
    in left ventricular cardiomyocytes. Front Biosci 13:356–368

  5. Tate CA, Helgason T, Hyek MF et al (1996) SERCA2a and mitochondrial cytochrome oxidase
    expression are increased in hearts of exercise-trained old rats. Am J Phys 271(1 Pt 2):H68–H72

  6. Laughlin MH, Hale CC, Novela L et  al (1991) Biochemical characterization of exercise-
    trained porcine myocardium. J Appl Physiol 71(1):229–235

  7. Tibbits GF, Kashihara H, O’Reilly K (1989) Na+−Ca2+ exchange in cardiac sarcolemma:
    modulation of Ca2+ affinity by exercise. Am J Phys 256(3 Pt 1):C638–C643

  8. Shao CH, Wehrens XH, Wyatt TA et al (2009) Exercise training during diabetes attenuates
    cardiac ryanodine receptor dysregulation. J Appl Physiol 106(4):1280–1292

  9. Carneiro-Junior MA, Quintao-Junior JF, Drummond LR et al (2014) Effect of exercise training
    on Ca2+ release units of left ventricular myocytes of spontaneously hypertensive rats. Braz
    J Med Biol Res 47(11):960–965

  10. Franzini-Armstrong C, Protasi F, Ramesh V (1999) Shape, size, and distribution of ca(2+)
    release units and couplons in skeletal and cardiac muscles. Biophys J 77(3):1528–1539

  11. Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88(4):1491–1545

  12. Calore C, Zorzi A, Corrado D (2015) Clinical meaning of isolated increase of QRS voltages in
    hypertrophic cardiomyopathy versus athlete’s heart. J Electrocardiol 48(3):373–379

  13. Sharma S, Merghani A, Mont L (2015) Exercise and the heart: the good, the bad, and the ugly.
    Eur Heart J 36(23):1445–1453

  14. Badeer HS (1975) Resting bradycardia of exercise training: a concept based on currently avail-
    able data. Recent Adv Stud Cardiac Struct Metab 10:553–560

  15. Moore RL (1998) Cellular adaptations of the heart muscle to exercise training. Ann Med
    30(Suppl 1):46–53

  16. Bahrainy S, Levy WC, Busey JM et al (2016) Exercise training bradycardia is largely explained
    by reduced intrinsic heart rate. Int J Cardiol 222:213–216

  17. D’Souza A, Bucchi A, Johnsen AB et al (2014) Exercise training reduces resting heart rate via
    downregulation of the funny channel HCN4. Nat Commun 5:3775

  18. DiFrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res
    106(3):434–446

  19. Bois P, Bescond J, Renaudon B et al (1996) Mode of action of bradycardic agent, S 16257, on
    ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 118(4):1051–1057

  20. Zingman LV, Zhu Z, Sierra A et  al (2011) Exercise-induced expression of cardiac ATP-
    sensitive potassium channels promotes action potential shortening and energy conservation.
    J Mol Cell Cardiol 51(1):72–81

  21. Yang KC, Foeger NC, Marionneau C et al (2010) Homeostatic regulation of electrical excit-
    ability in physiological cardiac hypertrophy. J Physiol 588(Pt 24):5015–5032

  22. Brown DA, Chicco AJ, Jew KN et al (2005) Cardioprotection afforded by chronic exercise is
    mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the
    rat. J Physiol 569(Pt 3):913–924

  23. Jew KN, Olsson MC, Mokelke EA et al (2001) Endurance training alters outward K+ current
    characteristics in rat cardiocytes. J Appl Physiol 90(4):1327–1333

  24. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305(5930):147–148

  25. Foster MN, Coetzee WA (2016) KATP channels in the cardiovascular system. Physiol Rev
    96(1):177–252

  26. Zingman LV, Hodgson DM, Bast PH et al (2002) Kir6.2 is required for adaptation to stress.
    Proc Natl Acad Sci U S A 99(20):13278–13283


5 Structural, Contractile and Electrophysiological Adaptations of Cardiomyocytes...

Free download pdf