Infectious Agents Associated Cancers Epidemiology and Molecular Biology

(Nora) #1

232


Acknowledgments This work was supported by the grant (CA167065, J.C.F) from the National
Cancer Institute of the National Institutes of Health and the grant (81371825, X.Z.L) from Natural
Science Foundation of China.


References



  1. Blaskovic D, Stancekova M, Svobodova J, Mistrikova J (1980) Isolation of five strains of her-
    pesviruses from two species of free living small rodents. Acta Virol 24:468

  2. Mistrikova J, Blaskovic D (1985) Ecology of the murine alphaherpesvirus and its isolation
    from lungs of rodents in cell culture. Acta Virol 29:312–317

  3. Svobodova J, Blaskovic D, Mistrikova J (1982) Growth characteristics of herpesviruses iso-
    lated from free living small rodents. Acta Virol 26:256–263

  4. Efstathiou S, Ho YM, Hall S, Styles CJ, Scott SD, Gompels UA (1990) Murine herpesvirus 68
    is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri.
    J Gen Virol 71(Pt 6):1365–1372

  5. Virgin HW, Latreille P, Wamsley P, Hallsworth K, Weck KE, Dal Canto AJ, Speck SH
    (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol
    71:5894–5904

  6. Sunil-Chandra NP, Efstathiou S, Nash AA (1992) Murine gammaherpesvirus 68 establishes a
    latent infection in mouse B lymphocytes in vivo. J Gen Virol 73(Pt 12):3275–3279

  7. Weck KE, Barkon ML, Yoo LI, Speck SH, Virgin HI (1996) Mature B cells are required for
    acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68.
    J Virol 70:6775–6780

  8. Weck KE, Kim SS, Virgin HI, Speck SH (1999) B cells regulate murine gammaherpesvirus 68
    latency. J Virol 73:4651–4661

  9. Milho R, Smith CM, Marques S, Alenquer M, May JS, Gillet L, Gaspar M, Efstathiou S,
    Simas JP, Stevenson PG (2009) In vivo imaging of murid herpesvirus-4 infection. J Gen Virol
    90:21–32

  10. Stewart JP, Usherwood EJ, Ross A, Dyson H, Nash T (1998) Lung epithelial cells are a major
    site of murine gammaherpesvirus persistence. J Exp Med 187:1941–1951

  11. Weck KE, Kim SS, Virgin HI, Speck SH (1999) Macrophages are the major reservoir of latent
    murine gammaherpesvirus 68 in peritoneal cells. J Virol 73:3273–3283

  12. Sunil-Chandra NP, Arno J, Fazakerley J, Nash AA (1994) Lymphoproliferative disease in mice
    infected with murine gammaherpesvirus 68. Am J Pathol 145:818–826

  13. Usherwood EJ, Ross AJ, Allen DJ, Nash AA (1996) Murine gammaherpesvirus-induced sple-
    nomegaly: a critical role for CD4 T cells. J Gen Virol 77(Pt 4):627–630

  14. Tarakanova VL, Suarez F, Tibbetts SA, Jacoby MA, Weck KE, Hess JL, Speck SH, Virgin HW
    (2005) Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease
    and lymphoma in BALB beta2 microglobulin-deficient mice. J Virol 79:14668–14679

  15. Ebrahimi B, Dutia BM, Brownstein DG, Nash AA (2001) Murine gammaherpesvirus-68 infec-
    tion causes multi-organ fibrosis and alters leukocyte trafficking in interferon-gamma receptor
    knockout mice. Am J Pathol 158:2117–2125

  16. Gangadharan B, Hoeve MA, Allen JE, Ebrahimi B, Rhind SM, Dutia BM, Nash AA (2008)
    Murine gammaherpesvirus-induced fibrosis is associated with the development of alterna-
    tively activated macrophages. J Leukoc Biol 84:50–58

  17. Weck KE, Dal Canto AJ, Gould JD, O’Guin AK, Roth KA, Saffitz JE, Speck SH, Virgin HW
    (1997) Murine gamma-herpesvirus 68 causes severe large-vessel arteritis in mice lacking
    interferon-gamma responsiveness: a new model for virus-induced vascular disease. Nat Med
    3:1346–1353


S. Dong et al.
Free download pdf