431599_Print.indd

(nextflipdebug5) #1

  1. McAlpine MC, Ahmad H, Wang D, Heath JR (2007) Highly ordered nanowire arrays on
    plastic substrates for ultrasensitiveflexible chemical sensors. Nat Mater 6:379

  2. Timko BP et al (2009) Electrical recording from hearts withflexible nanowire device arrays.
    Nano Lett 9:914

  3. Takei K et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial
    skin. Nat Mater 9:821

  4. Yao J, Yan H, Lieber CM (2013) A nanoscale combing technique for the large-scale
    assembly of highly aligned nanowires. Nat Nanotechnol 8:329

  5. Ahn JH et al (2006) Heterogeneous three-dimensional electronics by use of printed
    semiconductor nanomaterials. Science 314:1754

  6. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical
    detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294

  7. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat
    Nanotechol 6:615

  8. Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome
    sequencing. Nature 475:348

  9. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc.

  10. Zipes DP, Jalife J (2004) Cardiac electrophysiology: from cell to bedside. Saunders

  11. Dhein S, Mohr FW, Delmar M (2005) Practical methods in cardiovascular research.
    Springer, Berlin

  12. Davie JT et al (2006) Dendritic patch-clamp recording. Nat Protocols 1:1235

  13. Halbach MD, Egert U, Hescheler J, Banach K (2003) Estimation of action potential changes
    fromfield potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol
    Biochem 13:271

  14. Meyer T, Boven KH, Gunther E, Fejtl M (2004) Micro-electrode arrays in cardiac safety
    pharmacology: a novel tool to study QT interval prolongation. Drug Saf 27:763

  15. Erickson J, Tooker A, Tai YC, Pine J (2008) Caged neuron MEA: A system for long-term
    investigation of cultured neural network connectivity. J Neurosci Method 175:1

  16. Law JKY et al (2009) The use of microelectrode array (MEA) to study the protective effects
    of potassium channel openers on metabolically compromised HL-1 cardiomyocytes. Physiol
    Meas 30:155

  17. Ingebrandt S, Yeung C-K, Krause M, Offenhausser A (2001)
    Cardiomyocyte-transistor-hybrids for sensor application. Biosens Bioelectron 16:565

  18. Yeung C-K, Ingebrandt S, Krause M, Offenhausser A, Knoll W (2001) Validation of the use
    offield effect transistors for extracellular signal recording in pharmacological bioassays.
    J Pharmacol Toxicol Meth 45:207

  19. Cohen A, Shappir J, Yitzchiak S, Spira ME (2006) Experimental and theoretical analysis of
    neuron-transistor hybrid electrical coupling: the relationships between the electro-anatomy
    of cultured Aplysia neurons and the recordedfield potentials. Biosens Bioelectron 22:656

  20. Cohen A, Shappir J, Yitzchaik S, Spira ME (2008) Experimental and theoretical analysis of
    neuron-transistor hybrid electrical coupling: the relationships between the electro-anatomy
    of cultured Aplysia neurons and the recordedfield potentials. Biosens Bioelectron 23:811

  21. Lu Z-L et al (2004) Electrocardiography in adult congenital heart disease. Electrocardiology
    14:11

  22. Reppel M et al (2004) Microelectrode arrays: a new tool to measure embryonic heart
    activity. J Electrocardiol 37:104

  23. Fromherz P (2002) Electrical interfacing of nerve cells and semiconductor chips.
    ChemPhysChem 2:276

  24. Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology.
    Nat Nanotechnol 8:83

  25. Xie C, Lin Z, Hanson L, Cui Y, Cui B (2012) Intracellular recording of action potentials by
    nanopillar electroporation. Nat Nanotechnol 7:185

  26. Robinson JT et al (2012) Vertical nanowire electrode arrays as a scalable platform for
    intracellular interfacing to neuronal circuits. Nat Nanotechnol 7:180


12 1 Introduction

Free download pdf