Nucleic Acids in Chemistry and Biology

(Rick Simeone) #1

  1. Y.S. Sanghvi and P.D. Cook (eds), Carbohydrate modifications in antisense research. ACS Symp. Ser.,
    Vol. 580, American Chemical Society, Washington, DC, 1994.

  2. P.E. Nielsen (ed), Oligonucleotide antisense. Biochim. Biophys. Acta, 1999, 1489 , 1–206.

  3. A.M. Lane, S. Ebel and T. Brown, NMR assignments and solution conformation of the DNA:RNA
    hybrid d(GCGAACTT).r(AAGUUCAC). Eur. J. Biochem., 1993, 213 , 297–306.

  4. O.Y. Fedoroff, M. Salazar and B.R. Reid, Structure of a DNA:RNA hybrid duplex, Why RNase H
    does not cleave pure RNA. J. Mol. Biol., 1993, 233 , 509–523.

  5. M. Nowotny, S.A. Gaidamakov, R.J. Crouch and W. Yang, Crystal structures of RNase H bound to an
    RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell, 2005, 121 , 1005–1016.

  6. S.G. Sarafianos, K. Das, C. Tantillo, A.D. Clark Jr., J. Ding, J.M. Whitcomb, P.L. Boyer, S.H. Hughes and
    E. Arnold, Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:
    DNA, EMBO J., 2001, 20 , 1449–1461.

  7. J.A. Jaeger, J. SantaLucia and I. Tinoco, Determination of RNA structure and thermodynamics. Ann.
    Rev. Biochem., 1993, 62 , 255–287.

  8. P.R. Schimmel, D. Söll and J.N. Abelson, Transfer RNA: Structure and dynamics of RNA. NATO ASI
    Series. Plenum, New York, 1979.

  9. S.M. Ereler, R. Kierzek, J.A. Jaeger, N. Sugimoto, M.H. Caruthers, T. Neilson and D.H. Turner,
    Improved free energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA,
    1986, 83 , 9373–9377.

  10. J.A. McCammon and S.C. Harvey, Dynamics of Proteins and Nucleic Acids. Cambridge University
    Press, Cambridge, 1987.

  11. K.J. Breslauer, R. Frank, H. Blöcker and L.A. Marky, Predicting DNA duplex stability from base
    sequence. Proc. Natl. Acad. Sci. USA, 1986, 83 , 3746–3750.

  12. J.G. Wetmur, Hybridization and renaturation kinetics of nucleic acids. Ann. Rev. Biophys. Bioeng.,
    1976, 5 , 337–361.

  13. T.L. James, Relaxation behaviour of nucleic acids, in Phosphorus-31 NMR, D.G. Gorenstein (ed),
    Academic Press, New York, 349–400.

  14. D.M. Soumpasis and T.M. Jovin, Energetics of the B–Z transition, in Nucleic Acids and Molecular
    Biology, Vol. 1, F. Eckstein and D.M.J. Lilley (eds), Springer, Heidelberg, 85–111.

  15. M. Guéron and J.-P. Demaret, A simple explanation of the electrostatics of the B-to-Z transition of
    DNA. Proc. Natl. Acad. Sci. USA, 1992, 89 , 5740–5743.

  16. Cold Spring Harbor Symposia, Chromatin. Cold Spring Harbor Symp. Quant. Biol., 1978, 42 , 1–1353.

  17. K. Luger, A.W. Mäder, R.K. Richmond, D.F. Sargent and T.J. Richmond, Crystal structure of the
    nucleosome core particle at 2.8 Å resolution. Nature, 1997, 389 , 251–260.

  18. T.J. Richmond and C.A. Davey, The structure of DNA in the nucleosome core. Nature, 2003, 423 ,
    145–150.

  19. D.S. Pederson, F. Thorma and R.T. Simpson, Core particles, fibre and transcriptionally active
    chromatin structure. Ann. Rev. Cell Biol., 1986, 2 , 117–147.

  20. A.A. Travers and A. Klug, The bending of DNA in nucleosomes and its wider implications. Phil.
    Trans. Roy. Soc. Lond. B, 1987, 317 , 537–561.

  21. A.A. Travers, DNA conformation and protein binding. Ann. Rev. Biochem., 1989, 58 , 427–452.

  22. E.U. Selker, DNA methylation and chromatin structure: a view from below. Trends Biol. Sci., 1990,
    15 , 103–107.

  23. M.B. Schmid, Structure and function of the bacterial chromosome. Trends Biol. Sci., 1988, 13 ,
    131–135.

  24. M. Egli, Nucleic acid crystallography: current progress. Curr. Opin. Chem. Biol., 2004, 8 , 580–591.

  25. P.J. Paukstelis, J. Nowakowski, J.J. Birkoft and N.C. Seeman, Crystal structure of a continuous three-
    dimensional DNA lattice. Chem. Biol., 2004, 11 , 1119–1126.

  26. M. Egli, “Deoxyribo nanonucleic acid”: antiparallel, parallel and unparalleled. Chem. Biol., 2004, 11 ,
    1027–1029.


74 Chapter 2


http://www.ebook3000.com

Free download pdf