Nucleic Acids in Chemistry and Biology

(Rick Simeone) #1

  1. D.B. Olsen, F. Benseler, H. Aurup, W.A. Pieken and F. Eckstein, Study of a hammerhead ribozyme
    containing 2-modified adenosine residues. Biochemistry, 1991, 30 , 9735–9741.

  2. F. Benseler, D.M. Williams and F. Eckstein, Synthesis of suitably-protected phosphoramidites of
    2 -fluoro-2-deoxyguanosine and 2-amino-2-deoxyguanosine for incorporation into oligoribonu-
    cleotides. Nucleosides Nucleotides, 1992, 11 , 1333–1351.

  3. A.V.R. Rao, M.K. Gurjar and S.V.S. Lalitha, Discovery of a Novel Route to -thymidine – a
    precursor for anti-AIDS compounds. J. Chem. Soc. Chem. Commun., 1994, 1255–1256.

  4. L. Beigelman, P. Haeberli, D. Sweedler and A. Karpeisky, Improved synthetic approaches toward
    2 -O-methyl-adenosine and guanosine and their N-acyl derivatives. Tetrahedron, 2000, 56 , 1047–1056.

  5. M.J. Robins, J.S. Wilson, D. Madej, N.H. Low, F. Hansske and S.F. Wnuk, Nucleic-acid related
    compounds.88. Efficient conversions of ribonucleosides into their 2,3-anhydro, 2-(and 3)-deoxy,
    2 ,3-didehydro-2,3-dideoxy, and 2,3-dideoxynucleoside analogs. J. Org. Chem., 1995, 60 ,
    7902–7908.

  6. G.R.J. Thatcher and R. Kluger, Mechanism and catalysis of nucleophilic substitution in phosphate
    esters. Adv. Phys. Org. Chem., 1989, 25 , 99–265.

  7. E.V. Anslyn and D.M. Perreault, Unifying the current data on the mechanism of cleavage-
    transesterification of RNA. Angew. Chem. Int. Ed. Engl., 1997, 36 , 432–450.

  8. M. Oivanen, S. Kuusela and H. Lönnberg, Kinetics and mechanisms for the cleavage and
    isomerisation of the phosphodiester bonds of RNA by Brønsted acids and bases. Chem. Rev.,
    1988, 98 , 961–990.

  9. A.C. Hengge, in Comprehensive Biological Catalysis: A Mechanistic Reference, vol 1. M. Sinnott
    (ed), Academic Press, New York, 1988, 517–542.

  10. D.M. Brown, in Methods in Molecular Biology, vol 20. S. Agarwal (ed), Humana Press Inc., Totowa,
    NJ, 1993, 1–17.

  11. C.B. Reese, The chemical synthesis of oligo- and poly-nucleotides by the phosphotriester approach.
    Tetrahedron, 1978, 34 , 3143–3179.

  12. L.A. Slotin, Current methods of phosphorylation of biological molecules. Synthesis, 1975, 11 ,
    737–752.

  13. S.L. Beaucage and R.P. Iyer, Advances in the synthesis of oligonucleotides by the phosphoramidite
    approach. Tetrahedron, 1992, 48 , 2223–2311.

  14. J. Stawinski and A. Kraszewski, How to get the most out of two phosphorus chemistries studies
    on H-phosphonates. Acc. Chem. Res., 2002, 35 , 952–960.

  15. S. Narang, DNA synthesis. Tetrahedron, 1983, 39 , 3–22.

  16. C.B. Reese, The chemical synthesis of oligo- and poly-nucleotides: a personal commentary.
    Tetrahedron, 2002, 58 , 8893–8920.

  17. M.D. Matteucci and M.H. Caruthers, Nucleotide chemistry.4. Synthesis of deoxyoligonucleotides
    on a polymer support. J. Am. Chem. Soc., 1981, 103 , 3185–3191.

  18. S.L. Beaucage and M.H. Caruthers, Deoxynucleoside phosphoramidites – a new class of key
    intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett., 1981, 22 , 1859–1862.

  19. W.J. Stec, G. Zon, W. Egan and B. Stec, Automated solid-phase synthesis, separation, and
    stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J. Am. Chem. Soc.,
    1984, 106 , 6077–6079.

  20. M. Yoshikawa, T. Kato and T. Takenishi, Studies of phosphorylation. III. Selective phosphorylation
    of unprotected nucleosides. Bull. Chem. Soc. Jpn., 1969, 42 , 3505–3508.

  21. A. Arabshahi and P.A. Frey, A simplified procedure for synthesizing nucleoside 1-thiotriphosphates –
    dATP()S, dGTP()S, UTP()S, and dTTP()S. Biochem. Biophys. Res. Commun., 1994, 204 ,
    150–155.

  22. T. Sowa and S. Ouchi, Facile synthesis of 5-nucleotides by the selective phosphorylation of a
    primary hydroxyl group of nucleosides with phosphoryl chloride. Bull. Chem. Soc. Jpn., 1975, 48 ,
    2084–2090.


140 Chapter 3


http://www.ebook3000.com

Free download pdf