Alien Introgression in Wheat Cytogenetics, Molecular Biology, and Genomics

(Barry) #1

64


The wheat group can therefore be viewed as part of a greater continuum of genetic
relationships extending to many other grasses. This abundant gene pool containing
many economically important traits can be utilized for the improvement of domes-
ticated wheat.


References


Akhunov ED, Sehgal S, Liang H, Wang S, Akhunova AR, Kaur G, Li W, Forrest KL, See D,
Šimková H, Ma Y, Hayden MJ, Luo M, Faris JD, Doležel J, Gill BS (2013) Comparative analy-
sis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding
sequence evolution in polyploid wheat. Plant Physiol 161:252–265
Akhunova AR, Matniyazov RT, Liang H, Akhunov ED (2010) Homoeolog-specifi c transcriptional
bias in allopolyploid wheat. BMC Genomics 11:505
Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffi ths S, Moore G (2008) Detailed dissection of
the chromosomal region containing the Ph1 locus in wheat Triticum aestivum : with deletion
mutants and expression profi ling. Ann Bot 101:863–872
Alnaddaf LM, Moualla MY, Haider N (2012) the genetic relationships among Aegilops L. and
Triticum L. species. Asian J Agric Sci 4:352–367
Ankori H, Zohary D (1962) Natural hybridization between Aegilops sharonensis and Ae. longis-
sima : a morphological and cytological study. Cytologia (Tokyo) 27:314–324
Avivi L (1977) High grain protein content in wild wheat. Can J Gent Cytol 19:569–570
Avivi L (1979a) Utilization of Triticum dicoccoides for the improvement of grain protein quantity
and quality in cultivated wheats. Monogr Genet Agric 4:27–38
Avivi L (1979b) High grain protein content in wild tetraploid wheat Triticum dicoccoides Körn.
Proceedings of 5th International Wheat Genetics Symposium. New Delhi, India, Vol. 1,
pp. 372–380
Avivi L, Feldman M (1973) Mechanism of non-random chromosome placement in common
wheat. In: Sears ER, Sears LMS (eds.), Proceedings of 4th International Wheat Genetics
Symposium, Columbia, Missouri, pp. 627–633
Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. Distribution of highly
repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306
Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Shostak NG, Chikida NN, Zelenin AV,
Raupp WJ, Friebe B, Gill BS (2004) Genome differentiation in Aegilops. 4. Evolution of the
U-genome cluster, Plant Syst. Evol. 246: 45–76
Baum BR, Feldman M (2010) Gene loss of paralogous 5S DNA unit classes in newly formed
allopolyploids of Aegilops and Triticum. Genome 53:430–438
Baum BR, Estes JR, Gupta PK (1987) Assessment of the genomic system of classifi cation in the
Triticeae. Am J Bot 74:1388–1395
Belyayev A (2013) Chromosome evolution in marginal populations of Aegilops speltoides : causes
and consequences. Ann Bot 111:531–538
Belyayev A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes in allotetraploid
Triticum dicoccoides. Genome 43:1021–1026
Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable ele-
ments in a marginal plant population: temporal fl uctuations provide new insights into genome
evolution of wild diploid wheat. Mobile DNA 1: 6. doi: http://dx.doi.or/10.1186/1759-8753-1-6
Ben-Abu Y, Tzfadia O, Maoz Y, Kachanovsky D, Melamed-Bessudo C, Feldman M, Levy AA
(2014) Durum wheat evolution—a genomic analysis In: Porceddu E (ed) Proceedings of
Symposium on Genetics and Breeding of durum. Rome, 2014, pp.29–44
Ben-David S, Beery Y, Kashkush K (2013) Genome-wide analysis of short interspersed nuclear
elements SINES revealed high sequence conservation, gene association and retrotransposi-
tional activity in wheat. Plant J 76:201–210


M. Feldman and A.A. Levy
Free download pdf