Alien Introgression in Wheat Cytogenetics, Molecular Biology, and Genomics

(Barry) #1
67

Escobar JS, Scornavacca C, Cenci A, Guilhaumon C, Santoni S et al (2011) Multigenic phylogeny
and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol Biol 11:181–198.
doi: 10.1186/1471-2148-11-181
Evans LT, (1981) Yield improvement in wheat: empirical or analytical? In: L.T. Evans, W.J.
Peacock (eds.), Wheat Science - Today and Tomorrow, Cambridge University Press, Cambridge,
1981, pp. 203–222.
Fahima T, Cheng JP, Peng JH, Nevo E, Korol A (2006) Asymmetry distribution of disease resis-
tance genes and domestication synrome QTLs in tetraploid wheat genome. 8th International
Congress of Plant Molecular Biology, Adelaide, Australia
Fan X, Sha LN, Yu SB, Wu DD, Chen XH, Zhuo XF, Zhang HQ, Kang HY, Wang Y, Zheng YL,
Zhou YH (2013) Phylogenetic reconstruction and diversifi cation of the Triticeae (Poaceae)
based on single-copy nuclear Acc1 and Pgk1 gene data. Biochem Syst Ecol 50:346–360
Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science
338:758–767
Feldman M (1965a) Further evidence for natural hybridization between tetraploid species of
Aegilops section Pleionathera. Evolution 19:162–174
Feldman M (1965b) Fertility of interspecifi c F1 hybrids and hybrid derivatives involving tetra-
ploid species of Aegilops section Pleionathera. Evolution 19:556–562
Feldman M (1965c) Chromosome pairing between differential genomes in hybrids of tetraploid
Aegilops species. Evolution 19:563–568
Feldman M (1966) The effect of chromosomes 5B, 5D and 5A on chromosomal pairing in Triticum
aestivum. Proc Natl Acad Sci U S A 55:1447–1453
Feldman M (1993) Cytogenetic activity and mode of action of the pairing homoeologous (Phl)
gene of wheat. Crop Sci 33:894–897
Feldman M (2001) The origin of cultivated wheat. In: Bonjean A, Angus W (eds) The wheat book.
Lavoisier Tech and Doc, Paris, pp 1–56
Feldman M, Avivi L (1988) Genetic control of bivalent pairing in common wheat: the mode of Ph1
action. The Third Kew Chromosome Conference, pp. 269–279
Feldman M, Kislev M (1977) Aegilops searsii, a new species of section Sitopsis (Platystachys). Isr
J Bot 26:190–201
Feldman M, Kislev M (2007) Domestication of emmer wheat and evolution of free-threshing tet-
raploid wheat. Isr J Plant Sci 55:207–221
Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes.
Cytogenet Genome Res 109:250–258
Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat—a revolutionary repro-
gramming followed by gradual changes. J Genet Genomics 36:511–518
Feldman M, Levy AA (2011) Instantaneous genetic and epigenetic alterations in the wheat genome
caused by allopolyploidization. In: Gissis SB, Jablonka E (eds) Transformations of Lamarckism,
From Subtle Fluids to Molecular Biology. The MIT press, Cambridge, MA, pp 261–270
Feldman M, Levy AA (2012) Genome evolution due to allopolyploidization in wheat. Genetics
192:763–774
Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112
Feldman M, Strauss I (1983) A genome-restructuring gene in Aegilops longissima. In: Sakamoto S
(ed.), Proceedings of 6th International Wheat Genet. Symp., Kyoto, Japan, pp 309–314
Feldman M, Strauss I, Vardi A (1979) Chromosome pairing and fertility of F 1 hybrids of Aegilops
longissima and Ae. searsii. Can J Genet Cytol 21:261–272
Feldman M, Avivi L, Levy AA, Zaccai M, Avivi Y, Millet E (1990) High protein wheat. In: Bajaj
YPS (ed) Biotechnology in agriculture and forestry, vol 6, Crops II. Springer, Berlin,
Heidelberg, pp 593–614
Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution
of crop plants, 2nd edn. Longman Scientifi c, London, pp 184–192
Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy
DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous
chromosomes. Genetics 147:1381–1387


2 Origin and Evolution of Wheat and Related Triticeae Species

Free download pdf