Alien Introgression in Wheat Cytogenetics, Molecular Biology, and Genomics

(Barry) #1
71

Ling HQ, Zhao S, Liu D, Wang J, Sun H et al (2013) Draft genome of the wheat A-genome
progenitor Triticum urartu. Nature 496:87–90. doi: 10.1038/nature11997
Liu B, Segal G, Vega JM, Feldman M, Abbo S (1997) Isolation and characterization of chromosome-
specifi c DNA sequences from a chromosome arm genomic library of common wheat. Plant J
11:959–965
Liu B, Vega JM, Feldman M (1998a) Rapid genomic changes in newly synthesized amphiploids of
Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41:535–542
Liu B, Vega JM, Segal G, Abbo S, Rodova H, Feldman M (1998b) Rapid genomic changes in
newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding
DNA sequences. Genome 41:272–277
Love A (1982) Generic evolution of the wheatgrasses. BioI Zentralbl 101:199–212
Love A (1984) Conspectus of the Triticeae. Feddes Repert 95:425–521
Luo M-C, Yang Z-L, You FM, Kawahara T, Waines JG, Dvorak J (2007) The structure of wild and
domesticated emmer wheat populations, gene fl ow between them, and the site of emmer
domestication. Theor Appl Genet 114:947–959. doi: 10.1007/s00122-006-0474-0
Luo MC, Deal KR, Akhunov ED, Akhunova AR, Andeson OD et al (2009) Genome comparisons
reveal a dominant mechanism of chromosome number reduction in grasses and accelerated
genome evolution in Triticeae. Proc Natl Acad Sci U S A 106:15780–15785
Ma XF, Gustafson JP (2005) Genome evolution of allopolyploids: a process of cytological and
genetic diploidization. Cytogenet Genome Res 109:236–249
Ma XF, Gustafson JP (2006) Timing and rate of genome variation in triticale following allopoly-
ploidization. Genome 49:950–958
Ma XF, Fang P, Gustafson JP (2004) Polyploidization-induced genome variation in triticale.
Genome 47:839–848
Mac Key J (1954) Mutation breeding in polyploidy cereals, Acta Agriculturae Scandinavica,
Abstract content, vol. 4, issue 1
Mac Key J (1958 ) Mutagenic response in Triticum at different levels of ploidy, In: Jenkins BC (ed)
Proc. 1st Inter Wheat Genetics Symp, Winnipeg, Manitoba, Canada pp. 88–111
Mac Key J (1966) Species relationship in Triticum. Proc 2nd Intern Wheat Genet Symp, Lund,
Hereditas (Suppl) 2: 237–276
Maestra B, Naranjo T (1999) Structural chromosome differentiation between Triticum timopheevii
and T. turgidum and T. aestivum. Theor Appl Genet 98:744–750
Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, The International Wheat Genome
Sequencing Consortium, Jakobsen KS, Wulff BBH, Steuernagel B, Klaus FX, Mayer KFX,
Olsen, OA (2014) Ancient hybridizations among the ancestral genomes of bread wheat.
Science 345(6194), doi: 10.1126/science.1250092
Mason-Gamer RJ (2005) The ß-amylase genes of grasses and a phylogenetic analysis of the
Triticeae (Poaceae). Am J Bot 92:1045–1058
Mason-Gamer RJ, Kellogg EA (1996) Testing for phylogenetic confl ict among molecular data sets
in the tribe Triticeae (Gramineae). Syst Biol 45:524–545
Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T (2013) Genetic
basis for spontaneous hybrid genome doubling during allopolyploid speciation of common
wheat shown by natural variation analyses of the paternal species. PLoS One 8, e68310.
doi: 10.1371/journal.pone.0068310
McFadden ES, Sears ER (1944) The artifi cial synthesis of Triticum spelta. Records Genet Soc Am
13:26–27
McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid rela-
tives. J Heredity 37:107–116
Mendlinger S, Zohary D (1995) The extent and structure of genetic variation in species of the
Sitopsis group of Aegilops. Heredity 74:616–627
Middleton C, Stein N, Keller B, Kilian B, Wicker T (2013) Comparative analysis of genome com-
position in Triticeae reveals strong variation in transposable element dynamics and nucleotide
diversity. Plant J 73:347–356. doi: 10.1111/tpj.12048


2 Origin and Evolution of Wheat and Related Triticeae Species

Free download pdf