Genes, Brains, and Human Potential The Science and Ideology of Intelligence

(sharon) #1

  1. HOW THE BRAIN MAKES POTENTIAL 359
    6. HOW THE BRAIN MAKES POTENTIAL

  2. R. Plomin, J. C. DeFries, V. S. Knopik, and J. M. Neiderhiser, Behavioral Ge ne tics,
    6th ed. (New York: Worth Publishers, 2013), 63.

  3. J. Flynn, Intelligence and Human Pro gress (New York: Academic Press, 2013), 63;
    J. Flynn, interview in the In de pen dent, June 5, 2014.

  4. E. Goldberg, Th e New Executive Brain (Oxford: Oxford University Press, 2009), 4.

  5. R. del Moral, A. M. Brandmaier, L. Lewejohann, I. Kirste1, M. Kritzler, et al., “From
    Genomics to Scientomics: Expanding the Bioinformation Paradigm,” Information 2
    (July 2011): 651–671, 661; J. S. Allen, Th e Lives of the Brain: Human Evolution and the
    Organ of Mind (Cambridge, Mass.: Harvard University Press, 2012), 6.

  6. W. H. Warren and R. E. Shaw, “Events and Encounters as Units of Analy sis for Eco-
    logical Psy chol ogy,” in Per sis tence and Change: Proceedings of the First International
    Conference on Event Perception, ed. W. H. Warren and R. E. Shaw (Hillsdale, N.J.:
    Lawrence Erlbaum, 1985), 1–28, 6.

  7. R. H. Masland, “Th e Neuronal Or ga ni za tion of the Ret ina,” Neuron 76 (October 18,
    2012). p. 266–280, 266; D. D. Hoff man, Visual Intelligence: How We Create What We
    See (New York: W. W. Norton, 1998).

  8. H. R. B a rlow, “ Th e Knowledge Used in Vision and Where It Comes From,” Philo-
    sophical Transactions of the Royal Society 35, Series B (1997): 1141–1147, 1141.

  9. J. S. Lappin, D. Tadin, and E. J. Whittier, “Visual Coherence of Moving and Station-
    ary Image Changes,” Vision Research 42 (June 2002): 1523–1534.

  10. K. Richardson and D. S. Webster, “Recognition of Objects from Point- Light Stimuli:
    Evidence for Covariation Hierarchies in Conceptual Repre sen ta tion,” British Journal
    of Psy chol ogy 87 (July 1996): 567–591.

  11. D. Mackay, “Vision: Th e Capture of Optical Covariation,” in Visual Neuroscience, ed.
    J. D. Pettigrew, K. J. Sanderson, and W. R. Levick (Cambridge: Cambridge University
    Press, 1986), 365–373, 370.

  12. N.- L. Xu, M. T. Harnett, S. R. Williams, D. Huber, D. H. O’Connor, et al., “Nonlinear
    Dendritic Integration of Sensory and Motor Input During an Active Sensing
    Ta sk,” Nature 492 (December 2014): 247–251, 247; G. Buzsáki and K. Mizuseki, “Th e
    Log- Normal Brain: How Skewed Distributions Aff ect Network Operations,” Nature
    Reviews Neuroscience 15 (April 2014): 264–278.

  13. T. S. Lee, T. Stepleton, B. Potetz, and J. Samonds, “Neural Encoding of Scene Statistics
    for Surface and Object Inference,” in Object Categorization: Computer and Human
    Vision Perspective, ed. S. Dickinson et al. (Cambridge: Cambridge University Press,
    2007), 451–474.

  14. See A. Hyvärinen and J. Hurri, Natu ral Image Statistics: A Probabilistic Approach to
    Early Computational Vision (New York: Springer, 2009).

  15. S. Onat, D. Jancke, and P. König, “Cortical Long- Range Interactions Embed Statisti-
    cal Knowledge of Natu ral Sensory Input: A Voltage- Sensitive Dye Imaging Study,”
    F1000Research 2 (February 2013): doi: 10.3410/f1000research.2-51.v1.


This content downloaded from 139.184.14.159 on Tue, 17 Oct 2017 13:59:14 UTC
Free download pdf