Computational Methods in Systems Biology

(Ann) #1
A Scheme for Adaptive Selection of Population Sizes 143

In the future, the interplay of density estimators and population sizes could
be further explored. While the effect of density estimators on acceptance rates
has been already investigated [ 6 , 10 ], it has not been related to population sizes
yet. Alternative approaches to population size adaptation, for instance aiming
for a constant effective population size, could be considered. Comparisons to
methods requiring more specific problem structures than ABC-SMC, such as
accelerated maximum likelihood [ 4 ] or the generalized method of moments [ 12 ],
could be conducted where applicable. The adaptation scheme proposed here is
compatible with virtually any ABC-SMC scheme. We expect our method to be
applied to a wide range of model selection and parameter estimation tasks.


References



  1. Beaumont, M.A.: Approximate Bayesian Computation in evolution and ecology.
    Annu. Rev. Ecol. Evol. Syst. 41 (1), 379–406 (2010)

  2. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian Computation
    in population genetics. Genetics 162 (4), 2025–2035 (2002)

  3. Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis:
    The Kernel Approach with S-Plus Illustrations. Oxford University Press, Oxford
    (1997)

  4. Daigle, B.J., Roh, M.K., Petzold, L.R., Niemi, J.: Accelerated maximum likelihood
    parameter estimation for stochastic biochemical systems. BMC Bioinform. 13 ,68
    (2012)

  5. Eigen, M.: Prionics or the kinetic basis of prion diseases. Biophys. Chem. 63 (1),
    A1–A18 (1996)

  6. Filippi, S., Barnes, C.P., Cornebise, J., Stumpf, M.P.H.: On optimality of kernels
    for Approximate Bayesian Computation using Sequential Monte Carlo. Stat. Appl.
    Genet. Mol. Biol. 12 (1), 87–107 (2013)

  7. Fox, C.W., Roberts, S.J.: A tutorial on variational Bayesian inference. Artifi. Intell.
    Rev. 38 (2), 85–95 (2012)

  8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
    Chem. 81 (25), 2340–2361 (1977)

  9. Jagiella, N., Rickert, D., Theis, F.J., Hasenauer, J.: Parallelization and high-
    performance computing enables automated statistical inference of multi-scale mod-
    els. Cell Syst. 4 (2), 194–206 (2017)

  10. Koutroumpas, K., Ballarini, P., Votsi, I., Courn`ede, P.H.: Bayesian parameter esti-
    mation for the WNT pathway: an infinite mixture models approach. Bioinformatics
    32 (17), i781–i789 (2016)

  11. Levenberg, K.: A method for the solution of certain non-linear problems in least
    squares. Q. Appl. Math. 2 (2), 164–168 (1944)

  12. L ̈uck, A., Wolf, V.: Generalized method of moments for estimating parameters of
    stochastic reaction networks. BMC Syst. Biol. 10 , 98 (2016)

  13. Marin, J.M., Pillai, N.S., Robert, C.P., Rousseau, J.: Relevant statistics for
    Bayesian model choice. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 76 (5), 833–
    859 (2014)

  14. Marjoram, P., Molitor, J., Plagnol, V., Tavar ́e, S.: Markov Chain Monte Carlo
    without likelihoods. Proce. Natl. Acad. Sci. 100 (26), 15324–15328 (2003)

  15. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parame-
    ters. J. Soc. Ind. Appl. Math. 11 (2), 431–441 (1963)

Free download pdf