Computational Methods in Systems Biology

(Ann) #1

248 R. Schwieger and H. Siebert



  1. De Jong, H., Gouz ́e, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.:
    Qualitative simulation of genetic regulatory networks using piecewise-linear mod-
    els. Bull. Math. Biol. 66 (2), 301–340 (2004)

  2. De Jong, H., Page, M., Hernandez, C., Geiselmann, J.: Qualitative simulation of
    genetic regulatory networks: method and application. In: IJCAI, pp. 67–73 (2001)

  3. Eisenack, K.: Model ensembles for natural resource management: extensions of
    qualitative differential equations using graph theory and viability theory. Unpub-
    lished doctoral thesis, Free University Berlin, Germany (2006). Accessed 3 Feb
    2008

  4. John, M., Nebut, M., Niehren, J.: Knockout prediction for reaction networks with
    partial kinetic information. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.)
    VMCAI 2013. LNCS, vol. 7737, pp. 355–374. Springer, Heidelberg (2013). doi:10.
    1007/978-3-642-35873-9 22

  5. Kein ̈anen, M.: Techniques for solving Boolean equation systems. Ph.D. thesis,
    Helsinki University of Technology (2006)

  6. Klarner, H., Streck, A., Siebert, H.: PyBoolNet-a python package for the genera-
    tion, analysis and visualisation of boolean networks. Bioinformatics 33 , 770–772
    (2016)

  7. Melliti, T., Regnault, D., Richard, A., Sen ́e, S.: Asynchronous simulation of boolean
    networks by monotone boolean networks. In: El Yacoubi, S., Was, J., Bandini, S.↪
    (eds.) ACRI 2016. LNCS, vol. 9863, pp. 182–191. Springer, Cham (2016). doi:10.
    1007/978-3-319-44365-2 18

  8. Remy,E., Ruet, P., Thieffry, D.: Graphic requirements for multistability and ́
    attractive cycles in a boolean dynamical framework. Adv. Appl. Math. 41 (3), 335–
    350 (2008)

  9. Streck, A., Thobe, K., Siebert, H.: Data-driven optimizations for model checking
    of multi-valued regulatory networks. Biosystems 149 , 125–138 (2016)

  10. Thomas, R.: On the relation between the logical structure of systems and their
    ability to generate multiple steady states or sustained oscillations. In: Della, D.J.,
    Demongeot, J., Lacolle, B. (eds.) Numerical Methods in the Study of Critical
    Phenomena, pp. 180–193. Springer, Heidelberg (1981)

  11. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and
    memory. I. Structural conditions of multistationarity and other nontrivial behavior.
    Chaos 11 (1), 170–179 (2001)

  12. Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and
    memory. II. Logical analysis of regulatory networks in terms of feedback circuits.
    Chaos Interdiscip. J. Nonlinear Sci. 11 (1), 180–195 (2001)

  13. Videla, S., Saez-Rodriguez, J., Guziolowski, C., Siegel, A.: caspo: a toolbox for
    automated reasoning on the response of logical signaling networks families. Bioin-
    formatics 33 , 947–950 (2017)

  14. Wittmann, D.M., Krumsiek, J., Saez-Rodriguez, J., Lauffenburger, D.A., Klamt,
    S., Theis, F.J.: Transforming boolean models to continuous models: methodology
    and application to T-cell receptor signaling. BMC Syst. Biol. 3 (1), 98 (2009)

Free download pdf