Ecology, Conservation and Management of Wild Pigs and Peccaries

(Axel Boer) #1
Chapter 38: Antimicrobial resistance in wild boar in Europe

443


Havelaar, A. H., Ivarsson, S., Löfdahl, M. &
Nauta, M.J. (2013. Estimating the true
incidence of campylobacteriosis and
salmonellosis in the European Union



  1. Epidemiology and Infection 141(2):
    293–302.
    Jones, K. E., Patel, N. G., Levy, M., et al.
    (2008). Global trends in emerging
    infectious diseases. Nature 451(7181):
    990–993.
    Karesh, W. B., Dobson, A., Lloyd-Smith,
    J. O., et al. (2012). Ecology of zoonoses:
    natural and unnatural histories. The
    Lancet 380(9857): 1936–1945.
    Kozak, G. K., Boerlin, P., Janecko, N.,
    Reid-Smith, R. J. & Jardine, C. (2009).
    Antimicrobial resistance in Escherichia
    coli isolates from swine and wild small
    mammals in the proximity of swine farms
    and in natural environments in Ontario,
    Canada. Applied and Environmental
    Microbiology 75(3): 559–566.
    Kronvall, G., Giske, C. G. & Kahlmeter, G.
    (2011). Setting interpretive breakpoints
    for antimicrobial susceptibility testing
    using disk diffusion. International Journal
    of Antimicrobial Agents 38(4): 281–290.
    Laxminarayan, R., Duse, A., Wattal, C., et al.
    (2013). Antibiotic resistance – the need
    for global solutions. The Lancet Infectious
    Diseases 13(12): 1057–1098.
    Levy, S. B. & Marshall, B. (2004).
    Antibacterial resistance worldwide:
    causes, challenges and responses. Nature
    Medicine 10: S122–S129.
    Li, X. Z., Mehrotra, M., Ghimire, S. &
    Adewoye, L. (2007). β-Lactam resistance
    and β-lactamases in bacteria of animal
    origin. Veterinary Microbiology 121(3):
    197–214.
    Literak, I., Dolejska, M., Radimersky, T.,
    et al. (2010). Antimicrobial-resistant
    faecal Escherichia coli in wild mammals
    in central Europe: multiresistant
    Escherichia coli producing extended-
    spectrum beta-lactamases in wild boars.
    Journal of Applied Microbiology 108(5):
    1702–1711.
    Macdonald, D. & Laurenson, M. K. (2006).
    Infectious disease: inextricable linkages
    between human and ecosystem health.
    Biological Conservation 131: 143–150.
    Massei, G., Kindberg, J., Licoppe, A., et al.
    (2015). Wild boar populations up,
    numbers of hunters down? A review of
    trends and implications for Europe. Pest
    Management Science 71(4): 492–500.
    Mather, A. E., Matthews, L., Mellor, D. J.,
    et al. (2011). An ecological approach
    to assessing the epidemiology of
    antimicrobial resistance in animal and
    human populations. Proceedings of the
    Royal Society of London B: Biological
    Sciences 279(1733): 1630–1639.


Meng, X. J., Lindsay, D. S. & Sriranganathan,
N. (2009). Wild boars as sources for
infectious diseases in livestock and
humans. Philosophical Transactions of
the Royal Society of London B: Biological
Sciences 364(1530): 2697–2707.
Mentaberre, G., Porrero, M. C., Navarro-
Gonzalez, N., et al. (2013). Cattle drive
Salmonella infection in the wildlife–
livestock interface. Zoonoses and Public
Health 60(7): 510–518.
Mokracka, J., Koczura, R. & Kaznowski, A.
(2012). Transferable integrons of
Gram-negative bacteria isolated from the
gut of a wild boar in the buffer zone of
a national park. Annals of Microbiology
62(2): 877–880.
Navarro-Gonzalez, N., Mentaberre, G.,
Porrero, C. M., et al. (2012). Effect of
cattle on Salmonella carriage, diversity
and antimicrobial resistance in free-
ranging wild boar (Sus scrofa) in
northeastern Spain. PLoS ONE 7(12):
51614.
Navarro-Gonzalez, N., Casas-Díaz, E.,
Porrero, C. M., et al. (2013). Food-borne
zoonotic pathogens and antimicrobial
resistance of indicator bacteria in urban
wild boars in Barcelona, Spain. Veterinary
Microbiology 167(3): 686–689.
Navarro-Gonzalez, N., Velarde, R.,
Porrero, M. C., et al. (2014). Lack of
evidence of spill-over of Salmonella enterica
between cattle and sympatric Iberian ibex
(Capra pyrenaica) from a protected area in
Catalonia, NE Spain. Transboundary and
Emerging Diseases 61(4): 378–384.
Österblad, M., Norrdahl, K., Korpimäki, E.
& Huovinen, P. (2001). Antibiotic
resistance: How wild are wild mammals?
Nature 409: 37–38.
Ostfeld, R. S., Glass, G. E. & Keesing, F.
(2005). Spatial epidemiology: an
emerging (or re-emerging) discipline.
Trends in Ecology & Evolution 20(6):
328–336.
Poeta, P., Costa, D., Igrejas, G., Rodrigues, J.
& Torres, C. (2007). Phenotypic
and genotypic characterization of
antimicrobial resistance in faecal
enterococci from wild boars (Sus scrofa).
Veterinary Microbiology 125(3):
368–374.
Reisen, W. K. (2010). Landscape
epidemiology of vector-borne diseases.
Annual Review of Entomology 55:
461–483.
Rwego, I. B., Isabirye-Basuta, G.,
Gillespie, T. R. & Goldberg, T. L. (2008).
Gastrointestinal bacterial transmission
among humans, mountain gorillas,
and livestock in Bwindi Impenetrable
National Park, Uganda. Conservation
Biology 22(6): 1600–7.

Schierack, P., Römer, A., Jores, J., et al.
(2009). Isolation and characterization
of intestinal Escherichia coli clones
from wild boars in Germany. Applied
and Environmental Microbiology 75(3):
695–702.
Singer, R. S., Ward, M. P. & Maldonado, G.
(2006). Can landscape ecology untangle
the complexity of antibiotic resistance?
Nature Reviews Microbiology 4(12):
943–952.
Sjölund, M., Bonnedahl, J., Hernandez, J.,
et al. (2008). Dissemination of multidrug-
resistant bacteria into the Arctic.
Emerging Infectious Diseases 14(1): 70–72.
Thaller, M.C., Migliore, L., Marquez, C.,
et al. (2010). Tracking acquired antibiotic
resistance in commensal bacteria of
Galapagos land iguanas: no man, no
resistance. PLoS ONE 5(2): 8989.
Vieira-Pinto, M., Morais, L., Caleja, C., et al.
(2011). Salmonella sp. in game (Sus scrofa
and Oryctolagus cuniculus). Foodborne
Pathogens and Disease 8(6): 739–740.
Wahlstrom, H., Tysen, E., Olsson Engvall, E.,
et al. (2003). Survey of Campylobacter
species, VTEC O157 and Salmonella
species in Swedish wildlife. Veterinary
Record 153(3): 74–80.
Ward, M. J., Gibbons, C. L., McAdam, P. R.,
et al. (2014). Time-scaled evolutionary
analysis of the transmission and antibiotic
resistance dynamics of Staphylococcus
aureus clonal complex 398. Applied and
Environmental Microbiology 80(23):
7275–7282.
Wellington, E. M., Boxall, A. B., Cross, P.,
et al. (2013). The role of the natural
environment in the emergence of
antibiotic resistance in Gram-negative
bacteria. The Lancet Infectious Diseases
13(2): 155–165.
Woolhouse, M. & Farrar, J. (2014). Policy: an
intergovernmental panel on antimicrobial
resistance. Nature 509: 555–557.
World Health Organization (WHO). (2012).
Critically important antimicrobials for
human medicine. Geneva: WHO.
(2014). Antimicrobial resistance: global report
on surveillance. World Health Organization.
http://apps.who.int/iris/bitstream/10665/
112642/1/9789241564748_eng.pdf
(2016). Ebola situation report. http://
apps.who.int/ebola/ebola-situation-reports
Zottola, T., Montagnaro, S., Magnapera, C.,
et al. (2013). Prevalence and antimicrobial
susceptibility of Salmonella in European
wild boar (Sus scrofa); Latium Region –
Italy. Comparative Immunology,
Microbiology and Infectious Diseases
36(2): 161–168.

.040

13:02:28
Free download pdf