Chapter 3: Diet and ecology of extant and fossil wild pigs
37
to use photographs of the fossils collected by the Omo Group
Research Expedition, and to Tim White for permission to
use photographs of the fossils collected by the Middle Awash
research project and of the casts of fossil suids from the collec-
tions of the Human Evolution Research Center, University of
California at Berkeley. I also thank John Rowan for improving
the English of the manuscript. The writing of this manuscript
was funded by the LaScArBx at Bordeaux, a programme sup-
ported by the ANR (Agence Nationale pour la Recherche,
ANR-10-LABX-52). I dedicate this manuscript to my wife
Sohee and our daughter Lise Miso ‘Dodo’, born just a few days
before the submission.
References
Balasse, M. (2002). Reconstructing dietary
and environmental history from enamel
isotopic analysis: time resolution of intra-
tooth sequential sampling. International
Journal of Osteoarchaeology 12: 155–165.
Bibi, F. & Kiessling, W. (2015). Continuous
evolutionary change in Plio–Pleistocene
mammals of eastern Africa. Proceedings
of the National Academy of Sciences of the
United States of America 112: 10623–10628.
Bishop, L. C. (1999). Suid paleoecology and
habitat preferences at African Pliocene
and Pleistocene hominid localities. In
Bromage, T. G. & Schrenk, F. (eds.),
African biogeography, climate change
and human evolution. Oxford: Oxford
University Press, pp. 216–225.
Boisserie, J.-R., Souron, A., Mackaye,
H. T., et al. (2014). A new species of
Nyanzachoerus (Cetartiodactyla: Suidae)
from the Late Miocene Toros-Ménalla,
Chad, Central Africa. PLoS ONE 9:
e103221.
Bonnefille, R. (2010). Cenozoic vegetation,
climate changes and hominid evolution
in tropical Africa. Global and Planetary
Change 72: 390–411.
Calandra, I. & Merceron, G. (2016). Dental
microwear texture analysis in mammalian
ecology. Mammal Review 46: 215–228.
Cerling, T. E. & Harris, J. M. (1999). Carbon
isotope fractionation between diet and
bioapatite in ungulate mammals and
implications for ecological and paleoeco-
logical studies. Oecologia 120: 347–363.
Cerling, T. E., Harris, J. M., Leakey, M. G.,
Passey, B. H. & Levin, N. E. (2010). Stable
carbon and oxygen isotopes in East
African mammals: modern and fossil.
In Werdelin, L. & Sanders, W. J. (eds.),
Cenozoic mammals of Africa. Berkeley,
CA: University of California Press, pp.
941–952.
Cerling, T. E., Andanje, S. A., Blumenthal,
S. A., et al. (2015). Dietary changes of
large herbivores in the Turkana Basin,
Kenya from 4 to 1 Ma. Proceedings of the
National Academy of Sciences of the United
States of America 112: 11467–11472.
Cernusak, L. A., Tcherkez, G., Keitel, C.,
et al. (2009). Why are non-photosynthetic
tissues generally^13 C enriched compared
with leaves in C 3 plants? Review and syn-
thesis of current hypotheses. Functional
Plant Biology 36: 199–213.
Clauss, M., Kaiser, T. & Hummel, J. (2008a).
The morphophysiological adaptations
of browsing and grazing mammals. In
Gordon, I. J. & Prins, H. H. T. (eds.), The
ecology of browsing and grazing. Berlin:
Springer, pp. 47–88.
Clauss, M., Nijboer, J., Loermans, J. H. M.,
et al. (2008b). Comparative digestion
studies in wild suids at Rotterdam Zoo.
Zoo Biology 27: 305–319.
Codron, D., Codron, J., Sponheimer, M.,
Bernasconi, S.M. & Clauss, M. (2011).
When animals are not quite what
they eat: diet digestibility influences
(^13) C-incorporation rates and apparent dis-
crimination in a mixed-feeding herbivore.
Canadian Journal of Zoology 89:
453–465.
Codron, J., Codron, D., Lee-Thorp, J.A.,
et al. (2005). Taxonomic, anatomical, and
spatio-temporal variations in the stable
carbon and nitrogen isotopic composi-
tions of plants from an African savanna.
Journal of Archaeological Science 32:
1757–1772.
Cooke, H. B. S. & Wilkinson, A. F. (1978).
Suidae and Tayassuidae. In Maglio, V. J. &
Cooke, H. B. S. (eds.), Evolution of African
mammals. Cambridge, MA: Harvard
University Press, pp. 435–482.
deMenocal, P. B. (2004). African climate
change and faunal evolution during
the Pliocene–Pleistocene. Earth and
Planetary Science Letters 220: 3–24.
d’Huart, J.-P. (1978). Ecologie de l'hylochère
(Hylochoerus meinertzhageni Thomas) au
Parc National des Virunga. Exploration
du Parc National des Virunga, Deuxième
Série, Fascicule 25, Fondation pour
Favoriser les Recherches scientifiques en
Afrique. Brussels.
Farquhar, G. D., Ehleringer, J. R. & Hubick,
K. T. (1989). Carbon isotope discrimina-
tion and photosynthesis. Annual Review
of Plant Physiology and Plant Molecular
Biology 40: 503–537.
Francey, R. J., Allison, C. E., Etheridge, D.
M., et al. (1999). A 1000-year high preci-
sion record of δ^13 C in atmospheric CO 2.
Te l l u s 51B: 170–193.
Gearing, J. N. (1991). The study of diet and
trophic relationships through natural
abundance^13 C. In Coleman, D. C. & Fry,
B. (eds.), Carbon isotope techniques. New
York, NY: Academic Press, pp. 201–218.
Gilbert, W. H. (2008). Suidae. In Gilbert,
W. H. & Asfaw, B. (eds.), Homo erectus:
Pleistocene evidence from the Middle
Awash, Ethiopia. Berkeley, CA: University
of California Press, pp. 231–260.
Harris, J. M. & Cerling, T. E. (2002). Dietary
adaptations of extant and Neogene
African suids. Journal of Zoology 256:
45–54.
Harris, J. M. & White, T. D. (1979).
Evolution of the Plio–Pleistocene African
Suidae. Transactions of the American
Philosophical Society 69: 1–128.
Kohn, M. J. (2010). Carbon isotope composi-
tions of terrestrial C3 plants as indicators
of (paleo)ecology and (paleo)climate.
Proceedings of the National Academy of
Sciences of the United States of America
107: 19691–19695.
Kullmer, O. (1999). Evolution of African
Plio–Pleistocene suids (Artiodactyla:
Suidae) based on tooth pattern analysis.
Kaupia Darmstädter Beiträg zur
Naturgeschichte 9: 1–34.
Livingstone, D. A. & Clayton, W. D. (1980).
An altitudinal cline in tropical African
grass floras and its paleoecological signifi-
cance. Quaternary Research 13: 392–402.
Lucas, P. W. (2004). Dental functional
morphology: how teeth work. Cambridge:
Cambridge University Press.
Lüdecke, T., Mulch, A., Kullmer, O., et al.
(2016). Stable isotope dietary recon-
structions of herbivore enamel reveal
heterogeneous savanna ecosystems in the
Plio–Pleistocene Malawi Rift. P al ae og eo
gr aphy, P al ae oc li ma tology, Palaeoecology
459: 170–181.
Luyt, J., Lee-Thorp, J. A. & Avery, G. (2000).
New light on Middle Pleistocene west
coast environments from Elandsfontein,
Western Cape Province, South Africa.
South African Journal of Science 96:
399–403.
Martin, J. E., Vance, D. & Balter, V. (2015).
Magnesium stable isotope ecology using
mammal tooth enamel. Proceedings of
the National Academy of Sciences of the
United States of America 112: 430–435.
Meijaard, E., Oliver, W. L. R. & d’Huart,
J.-P. (2011). Suidae. In Wilson, D. E. &
Mittermeier, R. (eds.), Handbook of the
mammals of the world. Vol. 2. Hoofed
mammals. Madrid: Lynx Edicions, pp.
248–291.
.005
12:31:27