Part I: Evolution, Taxonomy, and Domestication
38
Merceron, G., Ramdarshan, A., Blondel, C.,
et al. (2016). Untangling the environmen-
tal from the dietary: dust does not matter.
Proceedings of the Royal Society B 283:
20161032.
Passey, B. H., Robinson, T. F., Ayliffe, L. K.,
et al. (2005). Carbon isotope fractionation
between diet, breath CO 2 , and bioapa-
tite in different mammals. Journal of
Archaeological Science 32: 1459–1470.
Rossouw, L. & Scott, L. (2011). Phytoliths
and pollen, the microscopic plant remains
in Pliocene volcanic sediments around
Laetoli, Tanzania. In Harrison, T. (ed.),
Paleontology and geology of Laetoli:
human evolution in context. Volume 1:
Geology, geochronology, paleoecology and
paleoenvironment. Berlin: Springer, pp.
201–215.
Sage, R. F. & Monson, R. K. (eds.). (1999).
C 4 plant biology. In Mooney, H. A. (series
ed.), Physiological ecology series. New
York, NY: Academic Press, p. 596.
Smedley, M. P., Dawson, T. E., Comstock,
J. P., et al. (1991). Seasonal carbon isotope
discrimination in a grassland community.
Oecologia 85: 314–320.
Souron, A. (2012). Histoire évolutive du
genre Kolpochoerus (Cetartiodactyla :
Suidae) au Plio–Pléistocène en Afrique
orientale. Université de Poitiers, Poitiers,
p. 517.
Souron, A., Balasse, M. & Boisserie, J.-R.
(2012). Intra-tooth isotopic profiles
of canines from extant Hippopotamus
amphibius and late Pliocene hippopota-
mids (Shungura Formation, Ethiopia):
insights into the seasonality of diet and
climate. Palaeogeography, Palaeocli
matology, Palaeoecology 342–343: 97–110.
Souron, A., Boisserie, J.-R. & White, T. D.
(2015a). A new species of the suid genus
Kolpochoerus from the Pliocene of
Ethiopia. Acta Palaeontologica Polonica
60: 79–96.
Souron, A., Merceron, G., Blondel, C., et al.
(2015b). Three-dimensional dental micro-
wear texture analysis and diet in extant
Suidae (Mammalia: Cetartiodactyla).
Mammalia 79: 279–291.
Sponheimer, M., Ruiter, D. d., Lee-Thorp,
J. A. & Späth, A. (2005). Sr/Ca and early
hominin diets revisited: new data from
modern and fossil tooth enamel. Journal
of Human Evolution 48: 147–156.
Tseng, Z. J. (2012). Connecting Hunter–
Schreger Band microstructure to
enamel microwear features: new
insights from durophagous carnivores.
Acta Palaeontologica Polonica 57:
473–484.
Uno, K. T., Cerling, T. E., Harris, J. M.,
et al. (2011). Late Miocene to Pliocene
carbon isotope record of differential diet
change among East African herbivores.
Proceedings of the National Academy of
Sciences of the United States of America
108: 6509–6514.
Vercammen, P. & Mason, D. R. (1993). The
warthogs (Phacochoerus africanus and
P. aethiopicus). In Oliver, W. L. R. (ed.),
Pigs, peccaries and hippos: status survey
and conservation action plan. Gland:
IUCN, pp. 75–84.
Wang, Y. & Cerling, T. E. (1994). A model of
fossil tooth and bone diagenesis: implica-
tions for paleodiet reconstruction from
stable isotopes. Palaeogeography, Palaeocli
matology, Palaeoecology 107: 281–289.
Warinner, C. & Tuross, N. (2009). Alkaline
cooking and stable isotope tissue-diet
spacing in swine: archaeological implica-
tions. Journal of Archaeological Research
36: 1690–1697.
White, T. D. (1995). African omnivores:
global climatic change and Plio–
Pleistocene hominids and suids. In Vrba,
E. S., Denton, G. H., Partridge, T. C. &
Burckle, L. H. (eds.). Paleoclimate and
evolution with emphasis on human origins.
New Haven, CT: Yale University Press, pp.
369–384.
White, T. D., Howell, F. C. & Gilbert, H.
(2006). The earliest Metridiochoerus
(Artiodactyla: Suidae) from the Usno
Formation, Ethiopia. Transactions of the
Royal Society of South Africa 61: 75–79.
Zazzo, A., Lécuyer, C., Sheppard, S. M. F.,
Grandjean, P. & Mariotti, A. (2004).
Diagenesis and the reconstruction of
paleoenvironments: a method to restore
original δ^18 O values of carbonate and
phosphate from fossil tooth enamel.
Geochimica et Cosmochimica Acta 68:
2245–2248.
.005
12:31:27