Systems Biology (Methods in Molecular Biology)

(Tina Sui) #1

  1. Bertalanffy L (1950) The theory of open sys-
    tems in physics and biology. Science
    111:23–29

  2. Knox SS (2010) From ‘omics’ to complex
    disease: a systems biology approach to gene-
    environment interactions in cancer. Cancer
    Cell Int 10(11):1–13

  3. Hornberg JJ, Bruggeman FJ, Westerhoff HV,
    Lankelma J (2006) Cancer: a systems biology
    disease. Syst Biol 83:81–90

  4. Kitano H (2013) Cancer systems biology: a
    robustness-based approach. In: Walhout M,
    Vidal M, Dekker J (eds) Handbook of systems
    biology. Academic, New York

  5. Auffray C, Nottale L (2008) Scale relativity
    theory and integrative systems biology:

  6. Founding principles and scale laws. Prog
    Biophys Mol Biol 97:79–114

  7. European Science Foundation (2008)
    Advancing systems biology for medical appli-
    cations. Science Policy Briefing 35

  8. Prigogine I (1961) Introduction to thermo-
    dynamics of irreversible processes. Wiley,
    New York

  9. De Donder T, Van Rysselberghe P (1936)
    Thermodynamics theory of affinity. Oxford
    University Press, London

  10. Nieto-Villar JM, Izquierdo-Kulich E,
    Betancourt-Mar JA, Tejera E (2013) Comple-
    jidad y auto-organizacio ́n de patrones natur-
    ales. Editorial UH, La Habana, Cuba

  11. Zotin AI (1988) Thermodynamic principles
    and reaction of organisms. Nauka, Moscow

  12. Hanahan D, Weinberg R (2011) Hallmarks of
    cancer: the next generation. Cell 144
    (5):646–674

  13. Nicolis G, Prigogine I (1977) Self organiza-
    tion in nonequilibrium systems. Wiley,
    New York

  14. Nicolis G, Daems D (1998) Probabilistic and
    thermodynamic aspects of dynamical systems.
    Chaos 8(2):311–320

  15. Landau LD, Lifshitz EM (1964) Curso de
    Fı ́sica Teo ́rica, Fı ́sica Estadı ́stica, vol

  16. Reverte ́,Me ́xico

  17. Landau LD (2008) On the theory of phase
    transitions. Ukr J Phys 53:25–35

  18. Izquierdo-Kulich E, Rebelo I, Tejera E,
    Nieto-Villar J (2013) Phase transition in
    tumor growth: I Avascular development. Phy-
    sica A 392(24):6616–6623

  19. Betancourt-Mar JA, Llanos-Pe ́rez JA,
    Cocho G, Mansilla R, Martin RR,
    Montero S, Nieto-Villar JM (2017) Phase
    transitions in tumor growth: IV Relationship
    between metabolic rate and fractal dimension


of human tumor cells. Physica A
473:344–351


  1. Ivancevic VG, Ivancevic TT (2007) High-
    dimensional chaotic and attractor systems, a
    comprehensive introduction, vol 32.
    Springer, New York

  2. Andronov AA, Khaikin SE (1949) Theory of
    oscillations. Princeton University Press,
    Princeton

  3. Andronov AA, Vit A, Chaitin C (1966) The-
    ory of oscillators. Pergamon Press, Oxford

  4. Nieto-Villar JM, Quintana R, Rieumont J
    (2003) Entropy production rate as a Lyapu-
    nov function in chemical systems: proof. Phys
    Scr 68(3):163–165

  5. Nicolis G, Nicolis C (2012) Foundations of
    complex systems: emergence, information
    and prediction. World Scientific, River Edge,
    NJ

  6. Izquierdo-Kulich E, Nieto-Villar JM (2013)
    Morphogenesis and complexity of the tumor
    patterns. In: Rubio RG (ed) Without bounds:
    a scientific canvas of nonlinearity and complex
    dynamics. Understanding complex systems.
    Springer, Berlin

  7. Dinicola S (2011) A systems biology approach
    to cancer: fractals, attractors, and nonlinear
    dynamics. OMICS 15(3):93–104

  8. Kitano H (2007) Towards a theory of
    biological robustness. Mol Syst 3:137

  9. Rockmore D (2005) Cancer complex nature.
    Santa Fe Inst Bull 20:18–21

  10. Roose T, Chapman SJ, Maini PK (2007)
    Mathematical models of avascular tumor
    growth. SIAM Rev 49(2):179–208

  11. Enderling H, Almog N, Hlatky L (2012) Sys-
    tems biology of tumor dormancy, vol 734.
    Springer Science & Business Media,
    New York

  12. D’Onofrio A (2013) Multifaceted kinetics of
    immuno-evasion from tumor dormancy. In:
    Systems biology of tumor dormancy.
    Springer, New York, pp 111–143

  13. Izquierdo-Kulich E, Nieto-Villar JM (2008)
    Morphogenesis of the tumor patterns. Math
    Biosci Eng 5(2):299–313

  14. Kuznetsov VA, Knott GD (2001) Modeling
    tumor regrowth and immunotherapy. Math
    Comput Modell 33(12):1275–1287

  15. Page K, Uhr J (2005) Mathematical models of
    cancer dormancy. Leuk Lymphoma 46
    (3):313–327

  16. Bru ́ A (2003) The universal dynamics of
    tumor growth. Biophys J 85(5):2948–2961

  17. Nasir NA, Kaiser HE (2008) Selected aspects
    of cancer progression: metastasis, apoptosis


Parameters Estimation in Phase-Space Landscape Reconstruction of Cell Fate... 165
Free download pdf