Systems Biology (Methods in Molecular Biology)

(Tina Sui) #1

  1. Samaga R, Saez-Rodriguez J, Alexopoulos
    LG et al (2009) The logic of EGFR/ErbB
    signaling: theoretical properties and analysis
    of high-throughput data. PLoS Comput Biol
    5:e1000438

  2. Schlatter R, Philippi N, Wangorsch G et al
    (2012) Integration of Boolean models exem-
    plified on hepatocyte signal transduction.
    Brief Bioinform 13:365–376

  3. Bornholdt S (2005) Less is more in modeling
    large genetic networks. Science 310:449–451

  4. Saez-Rodriguez J, Simeoni L, Lindquist JA
    et al (2007) A logical model provides insights
    into T cell receptor signaling. PLoS Comput
    Biol 3:e163

  5. Schlatter R, Schmich K, Avalos Vizcarra I et al
    (2009) ON/OFF and beyond—a boolean
    model of apoptosis. PLoS Comput Biol 5:
    e1000595

  6. Saadatpour A, Wang R-S, Liao A et al (2011)
    Dynamical and structural analysis of a T cell
    survival network identifies novel candidate
    therapeutic targets for large granular lympho-
    cyte leukemia. PLoS Comput Biol 7:
    e1002267

  7. Chowdhury S, Pradhan RN, Sarkar RR
    (2013) Structural and logical analysis of a
    comprehensive Hedgehog signaling pathway
    to identify alternative drug targets for glioma,
    colon and pancreatic cancer. PLoS One 8:
    e69132

  8. Assmann SM, Albert R (2009) Discrete
    dynamic modeling with asynchronous update,
    or how to model complex systems in the
    absence of quantitative information. Methods
    Mol Biol (Clifton, NJ) 553:207–225

  9. Kauffman SA (1969) Metabolic stability and
    epigenesis in randomly constructed genetic
    nets. J Theor Biol 22:437–467

  10. Terfve C, Cokelaer T, Henriques D et al
    (2012) CellNOptR: a flexible toolkit to train
    protein signaling networks to data using mul-
    tiple logic formalisms. BMC Syst Biol 6:133

  11. Helikar T, Kowal B, McClenathan S et al
    (2012) The cell collective: toward an open
    and collaborative approach to systems biol-
    ogy. BMC Syst Biol 6:96

  12. Klamt S, Saez-Rodriguez J, Gilles ED (2007)
    Structural and functional analysis of cellular
    networks with CellNetAnalyzer. BMC Syst
    Biol 1:2

  13. Chaouiya C, Naldi A, Thieffry D (2012) Log-
    ical modelling of gene regulatory networks
    with GINsim. Methods Mol Biol (Clifton,
    NJ) 804:463–479

  14. M€ussel C, Hopfensitz M, Kestler HA (2010)
    BoolNet—an R package for generation,


reconstruction and analysis of Boolean net-
works. Bioinformatics (Oxford)
26:1378–1380


  1. Albert I, Thakar J, Li S et al (2008) Boolean
    network simulations for life scientists. Source
    Code Biol Med 3:16

  2. Zheng J, Zhang D, Przytycki PF et al (2010)
    SimBoolNet—a cytoscape plugin for dynamic
    simulation of signaling networks. Bioinfor-
    matics (Oxford) 26:141–142

  3. Di Cara A, Garg A, De Micheli G et al (2007)
    Dynamic simulation of regulatory networks
    using SQUAD. BMC Bioinformatics. 8:462

  4. Hinkelmann F, Brandon M, Guang B et al
    (2011) ADAM: analysis of discrete models of
    biological systems using computer algebra.
    BMC Bioinformatics 12:295

  5. Swat M, Kel A, Herzel H (2004) Bifurcation
    analysis of the regulatory modules of the
    mammalian G1/S transition. Bioinformatics
    (Oxford) 20:1506–1511

  6. Saal LH, Johansson P, Holm K et al (2007)
    Poor prognosis in carcinoma is associated
    with a gene expression signature of aberrant
    PTEN tumor suppressor pathway activity.
    Proc Natl Acad Sci U S A 104:7564–7569

  7. P€utzer BM, Engelmann D (2013) E2F1 apo-
    ptosis counterattacked: evil strikes back.
    Trends Mol Med 19:89–98

  8. Polager S, Ginsberg D (2009) p53 and E2f:
    partners in life and death, Nature Reviews.
    Cancer 9:738–748

  9. Mirschel S, Steinmetz K, Rempel M et al
    (2009) ProMoT: modular modeling for sys-
    tems biology. Bioinformatics 25:687–689

  10. Hennessy BT, Smith DL, Ram PTet al (2005)
    Exploiting the PI3K/AKT pathway for cancer
    drug discovery. Nat Rev Drug Discov
    4:988–1004

  11. Hallstrom TC, Mori S, Nevins JR (2008) An
    E2F1-dependent gene expression program
    that determines the balance between prolifer-
    ation and cell death. Cancer Cell 13:11–22

  12. Khan FM, Schmitz U, Nikolov S et al (2014)
    Hybrid modeling of the crosstalk between
    signaling and transcriptional networks using
    ordinary differential equations and multi-
    valued logic. Biochim Biophys Acta
    1844:289–298

  13. Ramachandran S, Liu P, Young AN et al
    (2005) Loss of HOXC6 expression induces
    apoptosis in prostate cancer cells. Oncogene
    24:188–198

  14. Alfieri R, Bartocci E, Merelli E et al (2011)
    Modeling the cell cycle: from deterministic
    models to hybrid systems. Biosystems
    105:34–40


274 Faiz M. Khan et al.

Free download pdf