- Fowles JS, Brown KC, Hess AM et al (2016)
Intra- and interspecies gene expression models
for predicting drug response in canine osteo-
sarcoma. BMC Bioinformatics 17:93.https://
doi.org/10.1186/s12859-016-0942-8 - Dhawan D, Paoloni M, Shukradas S et al
(2015) Comparative gene expression analyses
identify luminal and basal subtypes of canine
invasive urothelial carcinoma that mimic pat-
terns in human invasive bladder cancer. PLoS
One 10:e0136688. https://doi.org/10.
1371/journal.pone.0136688 - Seok J, Warren HS, Cuenca AG et al (2013)
Genomic responses in mouse models poorly
mimic human inflammatory diseases. Proc
Natl Acad Sci 110:3507–3512.https://doi.
org/10.1073/pnas.1222878110 - Shay T, Jojic V, Zuk O et al (2013) Conserva-
tion and divergence in the transcriptional pro-
grams of the human and mouse immune
systems. Proc Natl Acad Sci 110:2946–2951.
https://doi.org/10.1073/pnas.1222738110 - Chan ET, Quon GT, Chua G et al (2009)
Conservation of core gene expression in verte-
brate tissues. J Biol 8:33.https://doi.org/10.
1186/jbiol130 - Brawand D, Soumillon M, Necsulea A et al
(2011) The evolution of gene expression levels
in mammalian organs. Nature 478:343–348.
https://doi.org/10.1038/nature10532 - Lin S, Lin Y, Nery JR et al (2014) Comparison
of the transcriptional landscapes between
human and mouse tissues. Proc Natl Acad Sci
111:17224–17229. https://doi.org/10.
1073/pnas.1413624111 - Gilad Y, Mizrahi-Man O (2015) A reanalysis of
mouse ENCODE comparative gene expression
data. F1000Research 4:121. 10.12688/
f1000research.6536.1 - Sudmant PH, Alexis MS, Burge CB (2015)
Meta-analysis of RNA-seq expression data
across species, tissues and studies. Genome
Biol 16:287. https://doi.org/10.1186/
s13059-015-0853-4 - H€anzelmann S, Castelo R, Guinney J (2013)
GSVA: gene set variation analysis for microarray
and RNA-Seq data. BMC Bioinformatics 14:7.
https://doi.org/10.1186/1471-2105-14-7 - NIH Genomic Data Commons Data Portal
(2016) v. 4.0.https://gdc-portal.nci.nih.gov - Ripley BD (2001) The R project in statistical
computing (2001). MSOR Connections.
Newsl LTSN Maths Stat OR Network 1:23–25 - Ihaka R, Gentleman R (1995) R: a language for
data analysis and graphics. J Comp Graph Stat
5:299–314 - Hornik K (2012) The comprehensive R archive
network. Comput Stat 4:394–398.https://
doi.org/10.1002/wics.1212 - Wickham H (2007) Reshaping data with the
{reshape} package. J Stat Software 21:1–20 - Wickham H (2009) ggplot2: elegant graphics
for dataanalysis. Springer, New York, NY - Love MI, Huber W, Anders S (2013) Moder-
ated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biol
15:550. https://doi.org/10.1186/PRE
ACCEPT-8897612761307401 - Smedley D, Haider S, Ballester B et al (2009)
BioMart—biological queries made easy. BMC
Genomics 10:22.https://doi.org/10.1186/
1471-2164-10-22 - Cunningham F, Amode MR, Barrell D et al
(2015) Ensembl 2015. Nucleic Acids Res 43:
D662–D669.https://doi.org/10.1093/nar/
gku1010 - Ashburner M, Ball CA, Blake JA et al (2000)
Gene ontology: tool for the unification of biol-
ogy. The gene ontology consortium. Nat Genet
25:25–29.https://doi.org/10.1038/75556 - Subramanian A, Tamayo P, Mootha VK et al
(2005) Gene set enrichment analysis: a
knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl
Acad Sci 102:15545–15550.https://doi.org/
10.1073/pnas.0506580102 - Liberzon A (2014) A description of the Molec-
ular Signatures Database (MSigDB) Web site.
Methods Mol Biol 1150:153–160. https://
doi.org/10.1007/978-1-4939-0512-6_9 - Molecular Signatures Database (MSigDB)
(2016) v. 5.2.http://software.broadinstitute.
org/gsea/msigdb - RobinsonMD,McCarthyDJ,Smyth GK (2010)
edgeR: a bioconductor package for differential
expression analysis of digital gene expression
data. Bioinformatics 26:139–140.https://doi.
org/10.1093/bioinformatics/btp616 - Wickham H (2014) Tidy data. J Stat Software
59:10.10.18637/jss.v059.i10 - Lin Y, Golovnina K, Chen Z-X et al (2016)
Comparison of normalization and differential
expression analyses using RNA-Seq data from
726 individual Drosophila melanogaster. BMC
Genomics 17:28.https://doi.org/10.1186/
s12864-015-2353-z - George NI, Chang C-W (2014) DAFS: a data-
adaptive flag method for RNA-sequencing data
to differentiate genes with low and high expres-
sion. BMC Bioinformatics 15:92.https://doi.
org/10.1186/1471-2105-15-92 - Cox MAA, Cox TF (2001) Multidimensional
scaling, 2nd edn. Chapman and Hall, Boca
Raton, FL - Benjamini Y, Hochberg Y (1995) Controlling
the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc B
57:289–300
Cross-Species RNA-Seq Analysis 305