Systems Biology (Methods in Molecular Biology)

(Tina Sui) #1

References



  1. Schneider MV (2013) Defining systems biol-
    ogy: a brief overview of the term and field.
    Methods Mol Biol 1021:1–11

  2. Kitano H (2002) Systems biology: a brief over-
    view. Science 295:1662–1664

  3. Bizzarri M, Palombo A (2015) Recognizing
    the “patient’s phenotype” through systems
    biology. Curr Synth Syst Biol 3:1

  4. Bizzarri M, Palombo A, Cucina A (2013) The-
    oretical aspects of systems biology. Prog Bio-
    phys Mol Biol 112(1–2):33–43

  5. Bizzarri M et al (2011) Fractal analysis in a
    systems biology approach to cancer. Semin
    Cancer Biol 21:175–182

  6. Fuchs R, Rice P, Cameron GN (1992) Molec-
    ular biological databases—present and future.
    Trends Biotechnol 10:61–66

  7. Gasch AP et al (2000) Genomic expression
    programs in the response of yeast cells to envi-
    ronmental changes. Mol Biol Cell
    11:4241–4257

  8. Kitano H (2004) Cancer as a robust system:
    implications for anticancer therapy. Nat Rev
    Cancer 4(3):227–235. https://doi.org/10.
    1038/nrc1300

  9. Kitano H (2002) Computational systems biol-
    ogy. Nature 420:206–210

  10. Gibelli L (2015) Stochastic features and strat-
    egy of computational methods: comment on
    “On the interplay between mathematics and
    biology, hallmarks toward a new systems biol-
    ogy” by N. Bellomo et al. Phys Life Rev
    12:74–75

  11. You L (2004) Toward computational systems
    biology. Cell Biochem Biophys 40:167–184

  12. Hood L (2003) Systems biology: integrating
    technology, biology, and computation. Mech
    Ageing Dev 124:9–16

  13. Kitano H (2004) Biological robustness. Nat
    Rev Genet 5:826–837

  14. Sheth AP, Larson JA (1990) Federated data-
    base systems for managing distributed, hetero-
    geneous, and autonomous databases. ACM
    Comput Surv 22(3):183–236

  15. Bertalanffy LV (1968) General system theory:
    foundations, development, Applications.
    Springer, New York, NY, p 295

  16. Svoboda J (2008) Foundations in cancer
    research. The turns of life and science. Adv
    Cancer Res 99:1–32

  17. Schneider CA, Rasband WS, Eliceiri KW
    (2012) NIH Image to ImageJ: 25 years of
    image analysis. Nat Methods 9:671–675

  18. Lamprecht MR, Sabatini DM, Carpenter AE
    (2007) CellProfiler: free, versatile software for
    automated biological image analysis. BioTech-
    niques 42:71–75

  19. Girish V, Vijayalakshmi A (2004) Affordable
    image analysis using NIH Image/ImageJ.
    Indian J Cancer 41:47

  20. Collins TJ (2007) ImageJ for microscopy. Bio-
    Techniques 43:25–30

  21. Hollywood K, Brison DR, Goodacre R (2006)
    Metabolomics: current technologies and future
    trends. Proteomics 6:4716–4723

  22. Kankaanpaa P et al (2012) BioImageXD: an
    open, general-purpose and high-throughput
    image-processing platform. Nat Methods
    9:683–689

  23. Schindelin J et al (2012) Fiji: an open-source
    platform for biological-image analysis. Nat
    Methods 9:676–682

  24. Murphy RF (2011) An active role for machine
    learning in drug development. Nat Chem Biol
    7:327–330


Imaging and Systems Biology 359
Free download pdf