proteome. Bioessays 35(7):597–601.https://
doi.org/10.1002/bies.201300017
- Misteli T (2001) Protein dynamics: implica-
tions for nuclear architecture and gene expres-
sion. Science 291(5505):843–847
- Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A,
Ozato K, Brown DT, Hager G, Bustin M, Mis-
teli T (2004) Global nature of dynamic
protein-chromatin interactions in vivo: three-
dimensional genome scanning and dynamic
interaction networks of chromatin proteins.
Mol Cell Biol 24(14):6393–6402. https://
doi.org/10.1128/MCB.24.14.6393-6402.
2004
- Turner BM (2012) The adjustable nucleo-
some: an epigenetic signaling module. Trends
Genet 28(9):436–444. https://doi.org/10.
1016/j.tig.2012.04.003
- Dodd IB, Micheelsen MA, Sneppen K, Thon G
(2007) Theoretical analysis of epigenetic cell
memory by nucleosome modification. Cell
129(4):813–822.https://doi.org/10.1016/j.
cell.2007.02.053
- Cyr AR, Domann FE (2011) The redox basis
of epigenetic modifications: from mechanisms
to functional consequences. Antioxid Redox
Signal 15(2):551–589. https://doi.org/10.
1089/ars.2010.3492
- Lu C, Thompson CB (2012) Metabolic regu-
lation of epigenetics. Cell Metab 16(1):9–17.
https://doi.org/10.1016/j.cmet.2012.06.
001
- Kupiec JJ (1996) A chance-selection model for
cell differentiation. Cell Death Differ 3
(4):385–390
- Kupiec JJ (1997) A Darwinian theory for the
origin of cellular differentiation. Mol Gen
Genet 255(2):201–208
37. Lane N, Martin W (2010) The energetics of
genome complexity. Nature 467
(7318):929–934. https://doi.org/10.1038/
nature09486
38. Paldi A (2003) Stochastic gene expression dur-
ing cell differentiation: order from disorder?
Cell Mol Life Sci 60(9):1775–1778.https://
doi.org/10.1007/s00018-003-23147-z
39. Paldi A (2012) What makes the cell differenti-
ate? Prog Biophys Mol Biol 110(1):41–43.
https://doi.org/10.1016/j.pbiomolbio.
2012.04.003
40. Mojtahedi M, Skupin A, Zhou J, Castano IG,
Leong-Quong RY, Chang H, Trachana K,
Giuliani A, Huang S (2016) Cell fate decision
as high-dimensional critical state transition.
PLoS Biol 14(12):e2000640. https://doi.
org/10.1371/journal.pbio.2000640
41. Richard A, Boullu L, Herbach U,
Bonnafoux A, Morin V, Vallin E, Guillemin A,
Papili Gao N, Gunawan R, Cosette J,
Arnaud O, Kupiec J-J, Espinasse T, Gonin-
Giraud S, Gandrillon O (2016) Single-cell-
based analysis highlights a surge in cell-to-cell
molecular variability preceding irreversible
commitment in a differentiation process.
PLoS Biol 14:e1002585.https://doi.org/10.
1371/journal.pbio.1002585
42. Velten L, Haas SF, Raffel S, Blaszkiewicz S,
Islam S, Hennig BP, Hirche C, Lutz C, Buss
EC, Nowak D, Boch T, Hofmann WK, Ho
AD, Huber W, Trumpp A, Essers MA, Stein-
metz LM (2017) Human haematopoietic stem
cell lineage commitment is a continuous pro-
cess. Nat Cell Biol 19(4):271–281.https://
doi.org/10.1038/ncb3493
43. Kupiec J-J (2009) The origin of individuals.
World Scientific, Hackensack, NJ
New Conceptual Framework 39