Systems Biology (Methods in Molecular Biology)

(Tina Sui) #1
proteome. Bioessays 35(7):597–601.https://
doi.org/10.1002/bies.201300017


  1. Misteli T (2001) Protein dynamics: implica-
    tions for nuclear architecture and gene expres-
    sion. Science 291(5505):843–847

  2. Phair RD, Scaffidi P, Elbi C, Vecerova J, Dey A,
    Ozato K, Brown DT, Hager G, Bustin M, Mis-
    teli T (2004) Global nature of dynamic
    protein-chromatin interactions in vivo: three-
    dimensional genome scanning and dynamic
    interaction networks of chromatin proteins.
    Mol Cell Biol 24(14):6393–6402. https://
    doi.org/10.1128/MCB.24.14.6393-6402.
    2004

  3. Turner BM (2012) The adjustable nucleo-
    some: an epigenetic signaling module. Trends
    Genet 28(9):436–444. https://doi.org/10.
    1016/j.tig.2012.04.003

  4. Dodd IB, Micheelsen MA, Sneppen K, Thon G
    (2007) Theoretical analysis of epigenetic cell
    memory by nucleosome modification. Cell
    129(4):813–822.https://doi.org/10.1016/j.
    cell.2007.02.053

  5. Cyr AR, Domann FE (2011) The redox basis
    of epigenetic modifications: from mechanisms
    to functional consequences. Antioxid Redox
    Signal 15(2):551–589. https://doi.org/10.
    1089/ars.2010.3492

  6. Lu C, Thompson CB (2012) Metabolic regu-
    lation of epigenetics. Cell Metab 16(1):9–17.
    https://doi.org/10.1016/j.cmet.2012.06.
    001

  7. Kupiec JJ (1996) A chance-selection model for
    cell differentiation. Cell Death Differ 3
    (4):385–390

  8. Kupiec JJ (1997) A Darwinian theory for the
    origin of cellular differentiation. Mol Gen
    Genet 255(2):201–208
    37. Lane N, Martin W (2010) The energetics of
    genome complexity. Nature 467
    (7318):929–934. https://doi.org/10.1038/
    nature09486
    38. Paldi A (2003) Stochastic gene expression dur-
    ing cell differentiation: order from disorder?
    Cell Mol Life Sci 60(9):1775–1778.https://
    doi.org/10.1007/s00018-003-23147-z
    39. Paldi A (2012) What makes the cell differenti-
    ate? Prog Biophys Mol Biol 110(1):41–43.
    https://doi.org/10.1016/j.pbiomolbio.
    2012.04.003
    40. Mojtahedi M, Skupin A, Zhou J, Castano IG,
    Leong-Quong RY, Chang H, Trachana K,
    Giuliani A, Huang S (2016) Cell fate decision
    as high-dimensional critical state transition.
    PLoS Biol 14(12):e2000640. https://doi.
    org/10.1371/journal.pbio.2000640
    41. Richard A, Boullu L, Herbach U,
    Bonnafoux A, Morin V, Vallin E, Guillemin A,
    Papili Gao N, Gunawan R, Cosette J,
    Arnaud O, Kupiec J-J, Espinasse T, Gonin-
    Giraud S, Gandrillon O (2016) Single-cell-
    based analysis highlights a surge in cell-to-cell
    molecular variability preceding irreversible
    commitment in a differentiation process.
    PLoS Biol 14:e1002585.https://doi.org/10.
    1371/journal.pbio.1002585
    42. Velten L, Haas SF, Raffel S, Blaszkiewicz S,
    Islam S, Hennig BP, Hirche C, Lutz C, Buss
    EC, Nowak D, Boch T, Hofmann WK, Ho
    AD, Huber W, Trumpp A, Essers MA, Stein-
    metz LM (2017) Human haematopoietic stem
    cell lineage commitment is a continuous pro-
    cess. Nat Cell Biol 19(4):271–281.https://
    doi.org/10.1038/ncb3493
    43. Kupiec J-J (2009) The origin of individuals.
    World Scientific, Hackensack, NJ


New Conceptual Framework 39
Free download pdf