5 Tolerance to Combined Stress of Drought and Salinity in Barley 119
Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M. Monitoring expression profiles of Arabidopsis
gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA
microarray. Plant J. 2003;34:868–87.
Oraby HF, Ransom CB, Kravchenko AN, Sticklen MB. Barley HVA1 gene confers salt tolerance
in R3 transgenic oat. Crop Sci. 2005;45:2218–27.
Ozkur O, Ozdemir F, Bor M, Turkan I. Physiochemical and antioxidant responses of the perennial
xerophyte Capparis ovata Desf. to drought. Environ Exp Bot. 2009;66:487–92.
Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW. Monitoring large-
scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol.
2002;48:551–73.
Pastori GM, Foyer CH. Common components, networks, and pathways of cross-tolerance to stress.
The central role of “redox” and abscisic acid-mediated controls. Plant Physiol. 2002;129:460–8.
Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A. Elevated CO 2 reduces
stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare.
Photosynth Res. 2012;111:269–83.
Peuke A, Rennenberg H. Carbon, nitrogen, phosphorus, and sulphur concentration and parti-
tioning in beech ecotypes ( Fagus sylvatica L.): phosphorus most affected by drought. Trees.
2004;18:639–48.
Pillen K, Zacharias A, Lèon J. Advanced backcross QTL analysis in barley ( Hordeum vulgare L.).
Theor Appl Genet. 2003;107:340–52.
Pillen K, Zacharias A, Lèon J. Comparative AB-QTL analysis in barley using a single exotic donor
of Hordeum vulgare ssp.spontaneum. Theor Appl Genet. 2004;108:1591–601.
Plaut Z. Plant exposure to water stress during specific growth stages. In: Trimble WS (ed.). Ency-
clopedia of water science. London: Taylor & Francis; 2003.
Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K. Monitoring expression profiles of rice
genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA
microarray and RNA gel-blot analyses. Plant Physiol. 2003;133:1755–67.
Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S. When defense pathways collide
the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol.
2004;134:1683–96.
Robinson SP, Downton WJS, Millhouse JA. Photosynthesis and ion content of leaves and isolated
chloroplasts of salt-stressed spinach. Plant Physiol. 1983;73:238–42.
Robredo A, Pérez-López U, Lacuesta M, Mena-Petite A, Muñoz-Rueda A. Influence of water
stress on photosynthetic characteristics in barley plants under ambient and elevated CO 2 con-
centrations. Biol Planta. 2010;54:285–92.
Rollins J, Habte E, Templer S, Colby T, Schmidt J, von Korff M. Leaf proteome alterations in
the context of physiological and morphological responses to drought and heat stress in barley
( Hordeum vulgare L.). J Exp Bot. 2013;64:3201–12.
Romero J, Marañón T. Long-term responses of Melilotus segetalis to salinity. I. Growth and parti-
tioning. Plant Cell Environ. 1994;17:1243–8.
Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia
H, Rodriguez EM. Genome-wide SNP discovery and linkage analysis in barley based on genes
responsive to abiotic stress. Mol Genet Genomics. 2005;274:515–27.
Rubio-Somoza I, Weigel D. MicroRNA networks and developmental plasticity in plants. Trends
Plant Sci. 2011;16:258–64.
Sadras VO. Evolutionary aspects of the trade-off between seed size and number in crops. Field
Crops Res. 2007;100:125–38.
Sairam R, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr
Sci Bangalore. 2004;86:407–21.
Samarah NH. Effects of drought stress on growth and yield of barley. Agron Sustain Dev.
2005;25:145–9.
Scandalios J. Oxidative stress: molecular perception and transduction of signals triggering antioxi-
dant gene defenses. Braz J Medical Biol Res. 2005;38:995–1014.