120 I. M. Ahmed et al.
Schmalenbach I, Le’on J, Pillen K. Identification and verification of QTLs for agronomic traits
using wild barley introgression lines. Theor Appl Genet. 2009;118:483–97.
Schnaithmann F, Pillen K. Detection of exotic QTLs controlling nitrogen stress tolerance among
wild barley introgression lines. Euphytica. 2013;189:1–22.
Seckin B, Turkan I, Sekmen AH, Ozfidan C. The role of antioxidant defense systems at differential
salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (culti-
vated barley). Environ Exp Bot. 2010;69:76–85.
Shannon M. Breeding, selection, and the genetics of salt tolerance. In: Staples RC, Toeniessen GA,
editors. Salinity tolerance in plants. New York: Wiley; 1984. pp. 232–53.
Shannon MC, Grieve CM, Francois LE. Whole-plant response to salinity. Plant-environment inter-
actions. New York: Marcel Dekker; 1994. pp. 199–244.
Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs
in plant stress responses. Biochim Biophys Acta. 2008;1779:743–8.
Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiol Planta.
2008;132:199–208.
Sicher RC, Timlin D, Bailey B. Responses of growth and primary metabolism of water-stressed
barley roots to rehydration. J Plant Physiol. 2012;169(7):686–95.
Siddique M, Hamid A, Islam M. Drought stress effects on water relations of wheat. Bot Bull Acad
Sinica. 2001;41:35–9.
Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochem.
1989;28:1057–60.
Sohan D, Jasoni R, Zajicek J. Plant-water relations of NaCl and calcium-treated sunflower plants.
Environ Exp Bot. 1999;42(2):105–11.
Sunkar R. Micrornas with macro-effects on plant stress responses. In: Davey J (ed.). Seminars in
cell & developmental biology. Amsterdam: Elsevier; 2010. pp. 805–11.
Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A. Identification of a novel gene
(Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol. 2007;64:17–34.
Taiz L, Zeiger E. Stress physiology. In: Taiz L, Zeiger E, editors. Plant physiology. Sunderland:
Sinauer Associates; 2006. pp. 671–81.
Talame’ V, Ozturk ZN, Bohnert HJ, Tuberosa R. Barley transcript profiles under dehydration
shock and drought stress treatments: a comparative analysis. J Exp Bot. 2007;58:229–40.
Talame V, Sanguineti MC, Chiapparino E, Bahri H, Salem MB, Forster BP, Ellis RP, Rhouma
S, Zoumarou W, Waugh R, Tuberosa R. Identification ofHordeum spontaneumQTL alleles
improving field performance of barley grown under rainfed conditions. Ann Appl Biol.
2004;144:309–19.
Tanksley SD, Nelson JC. Advanced backcross QTL analysis: a method for the simultaneous dis-
covery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines.
Theor Appl Genet. 1996;92:191–203.
Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK. Additive effects of Na^ +^ and Cl−
ions on barley growth under salinity stress. J Exp Bot. 2011;62:2189–203.
Termaat A, Munns R. Use of concentrated macronutrient solutions to separate osmotic from NaCl-
specific effects on plant growth. Func Plant Biol. 1986;13:509–22.
Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Leroy P, Monneveux P, Charrier
A. Several QTLs involved in osmotic-adjustment trait variation in barley ( Hordeum vulgare
L.). Theor Appl Genet. 1998;96:688–98.
Tuberosa R, Salvi S. Genomics approaches to improve drought tolerance in crops. Trends Plant
Sci. 2006;11:405–12.
Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE. De-
signing superoleophobic surfaces. Science. 2007;318:1618–22.
Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence im-
proves grain protein, zinc, and iron content in wheat. Science. 2006;314:1298–301.
Urano K, Kurihara Y, Seki M, Shinozaki K. ‘Omics’ analyses of regulatory networks in plant abi-
otic stress responses. Curr Opin Plant Biol. 2010;13:132–8.