214 P. Pandey et al.
'URXJKW
VWUHVV
3DWKRJHQ
VWUHVV
526 &D
$%$
-$6$(W
,QWHJUDWHG
GHIHQVHUHVSRQVH
RISODQWV
'LVHDVH
6XVFHSWLELOLW\
HQKDQFHG
'LVHDVH
VXVFHSWLELOLW\
UHGXFHG
1DWXUHORFDOL]DWLRQ
LQWHQVLW\RIVLJQDO
GHILQHGRZQVWUHDP
UHVSRQVH
3
3
'
'
"
6KDUHGUHVSRQVH 7DLORUHGUHVSRQVH
'URXJKWVWUHVV 3DWKRJHQVWUHVV
35JHQHV
6$5LQGXFWLRQ
0<%
$5(% 1$&
6WRPDWDO
FORVXUH
$%$
-$
(WK\OHQH
6$
&D 526
&'3.6 0$3.
&2, :5.<
(5(%3
3(5&(37,216,*1$/
75$16'8&7,216,*1$/
75$16&5,37,21
)$&7256
*(1((;35(66,21
*(1()81&7,21
&DOORVH
GHSRVLWLRQ 6\QWKHVLVRI SKHQ\OSURSDQRLGGHIHQVH
FRPSRXQGV
/HD5GE5G*67
'5(%DQG *O\R[\ODVH 3')
2VPRO\WHV\QWKHVLV
a
b
Fig. 10.1 Molecular understanding of the effect of concurrent drought on plant–pathogen
interactions. a Schematic representation of cross talk between key players of plant defense response
against concurrent drought and pathogen infection. The figure shows the signaling cascades and