214 P. Pandey et al.
'URXJKW
VWUHVV3DWKRJHQ
VWUHVV526 &D$%$-$6$(W,QWHJUDWHG
GHIHQVHUHVSRQVH
RISODQWV'LVHDVH
6XVFHSWLELOLW\
HQKDQFHG'LVHDVH
VXVFHSWLELOLW\
UHGXFHG1DWXUHORFDOL]DWLRQ
LQWHQVLW\RIVLJQDO
GHILQHGRZQVWUHDP
UHVSRQVH33
''"6KDUHGUHVSRQVH 7DLORUHGUHVSRQVH'URXJKWVWUHVV 3DWKRJHQVWUHVV35JHQHV6$5LQGXFWLRQ0<%
$5(% 1$&6WRPDWDO
FORVXUH$%$
-$(WK\OHQH
6$&D 526&'3.6 0$3.&2, :5.<(5(%33(5&(37,216,*1$/75$16'8&7,216,*1$/75$16&5,37,21
)$&7256*(1((;35(66,21*(1()81&7,21&DOORVH
GHSRVLWLRQ 6\QWKHVLVRI SKHQ\OSURSDQRLGGHIHQVH
FRPSRXQGV/HD5GE5G*67
'5(%DQG *O\R[\ODVH 3')2VPRO\WHV\QWKHVLVabFig. 10.1 Molecular understanding of the effect of concurrent drought on plant–pathogen
interactions. a Schematic representation of cross talk between key players of plant defense response
against concurrent drought and pathogen infection. The figure shows the signaling cascades and