Quorum Sensing

(sharon) #1
commenting this book chapter. We acknowledge the Swiss
National Foundation for Scientific Research for support (Project
31003A_153374 to GP and 31003A-143773 to LE).

References



  1. Mahenthiralingam E, Baldwin A, Dowson
    CG (2008) Burkholderia cepacia complex
    bacteria: opportunistic pathogens with impor-
    tant natural biology. J Appl Microbiol 104:
    1539–1551

  2. Eberl L, Vandamme P (2016) Members of the
    genus Burkholderia: good and bad guys.
    F1000Res 5:F1000 Faculty Rev-1007

  3. Lewenza S, Conway B, Greenberg EP, Sokol
    PA (1999) Quorum sensing inBurkholderia
    cepacia: identification of the LuxRI homologs
    CepRI. J Bacteriol 181:748–756

  4. Sokol PA, Malott RJ, Riedel K, Eberl L (2007)
    Communication systems in the genusBurkhol-
    deria: global regulators and targets for novel
    antipathogenic drugs. Future Microbiol
    2:555–563

  5. Conway BA, Greenberg EP (2002) Quorum-
    sensing signals and quorum-sensing genes in
    Burkholderia vietnamiensis. J Bacteriol
    184:1187–1191

  6. Malott RJ, Baldwin A, Mahenthiralingam E,
    Sokol PA (2005) Characterization of the
    cciIRquorum-sensing system inBurkholderia
    cenocepacia. Infect Immun 73:4982–4992

  7. Boon C, Deng Y, Wang LH, He Y, JL X, Fan Y
    et al (2008) A novel DSF-like signal fromBur-
    kholderia cenocepaciainterferes withCandida
    albicans morphological transition. ISME J
    2:27–36

  8. Bi H, Christensen QH, Feng Y, Wang H, Cro-
    nan JE (2012) TheBurkholderia cenocepacia
    BDSF quorum sensing fatty acid is synthesized
    by a bifunctional crotonase homologue having
    both dehydratase and thioesterase activities.
    Mol Microbiol 83:840–855

  9. Deng Y, Schmid N, Wang C, Wang J, Pessi G,
    Wu D et al (2012) Cis-2-dodecenoic acid
    receptor RpfR links quorum-sensing signal
    perception with regulation of virulence
    through cyclic dimeric guanosine monopho-
    sphate turnover. Proc Natl Acad Sci U S A
    109:15479–15484

  10. Suppiger A, Schmid N, Aguilar C, Pessi G,
    Eberl L (2013) Two quorum sensing systems
    control biofilm formation and virulence in
    members of theBurkholderia cepaciacomplex.
    Virulence 4:400–409

  11. Suppiger A, Aguilar C, Eberl L (2016) Evi-
    dence for the widespread production of DSF


family signal molecules by members of the
genusBurkholderiaby the aid of novel biosen-
sors. Environ Microbiol Rep 8:38–44


  1. Schmid N, Pessi G, Deng Y, Aguilar C, Carlier
    AL, Grunau A et al (2012) The AHL- and
    BDSF-dependent quorum sensing systems
    control specific and overlapping sets of genes
    inBurkholderia cenocepaciaH111. PLoS One
    7:e49966

  2. Riedel K, Arevalo-Ferro C, Reil G, Gorg A,
    Lottspeich F, Eberl L (2003) Analysis of the
    quorum-sensing regulon of the opportunistic
    pathogenBurkholderia cepaciaH111 by prote-
    omics. Electrophoresis 24:740–750

  3. Arevalo-Ferro C, Hentzer M, Reil G, Gorg A,
    Kjelleberg S, Givskov M et al (2003) Identifi-
    cation of quorum-sensing regulated proteins in
    the opportunistic pathogenPseudomonas aeru-
    ginosa by proteomics. Environ Microbiol
    5:1350–1369

  4. Inh€ulsen S, Aguilar C, Schmid N, Suppiger A,
    Riedel K, Eberl L (2012) Identification of
    functions linking quorum sensing with biofilm
    formation inBurkholderia cenocepaciaH111.
    Microbiologyopen 1:225–242

  5. Carlier A, Agnoli K, Pessi G, Suppiger A, Jenul
    C, Schmid N et al (2014) Genome sequence of
    Burkholderia cenocepaciaH111, a cystic fibro-
    sis airway isolate. Genome Announc 2:e00298

  6. Stekhoven DJ, Omasits U, Quebatte M, Dehio
    C, Ahrens CH (2014) Proteome-wide identifi-
    cation of predominant subcellular protein loca-
    lizations in a bacterial model organism. J
    Proteomics 99:123–137

  7. Ahrens CH, Brunner E, Qeli E, Basler K,
    Aebersold R (2010) Generating and navigating
    proteome maps using mass spectrometry. Nat
    Rev Mol Cell Biol 11:789–801

  8. Delmotte N, Ahrens CH, Knief C, Qeli E,
    Koch M, Fischer HM et al (2010) An
    integrated proteomics and transcriptomics ref-
    erence data set provides new insights into the
    Bradyrhizobium japonicumbacteroid metabo-
    lism in soybean root nodules. Proteomics
    10:1391–1400

  9. Koch M, Delmotte N, Ahrens CH, Omasits U,
    Schneider K, Danza F et al (2014) A link
    between arabinose utilization and oxalotrophy
    inBradyrhizobium japonicum. Appl Environ
    Microbiol 80:2094–2101


GeLC-MS/MS Proteomics to Identify Quorum Sensing Targets 201
Free download pdf