RNA Detection

(nextflipdebug2) #1

  1. We clearly see GFP mRNA localization at the poles of bacteria.
    However, this data should be interpreted very carefully. pET
    plasmids localize at the poles, and this is the reason why we spot
    mRNAs (and partially GFP protein) at the poles of the bacteria.


Acknowledgments


This work is supported by Helmholtz Initiative on Synthetic Biol-
ogy. Murat Sunbul thanks the Alexander von Humboldt Founda-
tion for a postdoctoral fellowship. Ankita Arora thanks the DAAD
for a doctoral fellowship.

References



  1. Martin KC, Ephrussi A (2009) mRNA locali-
    zation: gene expression in the spatial dimen-
    sion. Cell 136(4):719–730. doi:10.1016/j.
    cell.2009.01.044

  2. Broude NE (2011) Analysis of RNA localiza-
    tion and metabolism in single live bacterial
    cells: achievements and challenges. Mol Micro-
    biol 80(5):1137–1147. doi:10.1111/j.1365-
    2958.2011.07652.x

  3. Montero Llopis P, Jackson AF, Sliusarenko O,
    Surovtsev I, Heinritz J, Emonet T, Jacobs-
    Wagner C (2010) Spatial organization of the
    flow of genetic information in bacteria. Nature
    466(7302):77–81. doi:10.1038/nature09152

  4. Keiler KC (2011) RNA localization in bacteria.
    Curr Opin Microbiol 14(2):155–159. doi:10.
    1016/j.mib.2011.01.009

  5. Kannaiah S, Amster-Choder O (2016) Meth-
    ods for studying RNA localization in bacteria.
    Methods 98:99–103. doi:10.1016/j.ymeth.
    2015.12.010

  6. Babendure JR, Adams SR, Tsien RY (2003)
    Aptamers switch on fluorescence of triphenyl-
    methane dyes. J Am Chem Soc 125
    (48):14716–14717

  7. Constantin TP, Silva GL, Robertson KL,
    Hamilton TP, Fague K, Waggoner AS, Armi-
    tage BA (2008) Synthesis of new fluorogenic
    cyanine dyes and incorporation into RNA
    fluoromodules. Org Lett 10(8):1561–1564.
    doi:10.1021/ol702920e

  8. Lee J, Lee KH, Jeon J, Dragulescu-Andrasi A,
    Xiao F, Rao J (2010) Combining SELEX
    screening and rational design to develop light-
    up fluorophore-RNA aptamer pairs for RNA
    tagging. ACS Chem Biol 5(11):1065–1074

  9. Holeman LA, Robinson SL, Szostak JW, Wil-
    son C (1998) Isolation and characterization of


fluorophore-binding RNA aptamers. Fold Des
3(6):423–431


  1. Carothers JM, Goler JA, Kapoor Y, Lara L,
    Keasling JD (2010) Selecting RNA aptamers
    for synthetic biology: investigating magnesium
    dependence and predicting binding affinity.
    Nucleic Acids Res 38(8):2736–2747. doi:10.
    1093/nar/gkq082. gkq082 [pii]

  2. Ellington AD, Szostak JW (1990) In vitro
    selection of RNA molecules that bind specific
    ligands. Nature 346(6287):818–822. doi:10.
    1038/346818a0

  3. Paige JS, KY W, Jaffrey SR (2011) RNA mimics
    of green fluorescent protein. Science 333
    (6042):642–646. doi:10.1126/science.
    1207339

  4. Strack RL, Disney MD, Jaffrey SR (2013) A
    superfolding Spinach2 reveals the dynamic
    nature of trinucleotide repeat-containing
    RNA. Nat Methods 10(12):1219–1224.
    doi:10.1038/nmeth.2701

  5. Song W, Strack RL, Svensen N, Jaffrey SR
    (2014) Plug-and-play fluorophores extend the
    spectral properties of Spinach. J Am Chem Soc
    136(4):1198–1201. doi:10.1021/ja410819x

  6. Filonov GS, Moon JD, Svensen N, Jaffrey SR
    (2014) Broccoli: rapid selection of an RNA
    mimic of green fluorescent protein by
    fluorescence-based selection and directed evo-
    lution. J Am Chem Soc 136
    (46):16299–16308. doi:10.1021/ja508478x

  7. Dolgosheina EV, Jeng SCY, Panchapakesan
    SSS, Cojocaru R, Chen PSK, Wilson PD, Haw-
    kins N, Wiggins PA, Unrau PJ (2014) RNA
    mango aptamer-fluorophore: a bright, high-
    affinity complex for RNA labeling and tracking.
    ACS Chem Biol 9(10):2412–2420. doi:10.
    1021/cb500499x


Visualizing RNA with Fluorogenic Aptamers in vivo 303
Free download pdf