Telling the Evolutionary Time: Molecular Clocks and the Fossil Record

(Grace) #1

Keeling, P.J. (2001) ‘Foraminifera and Cercozoa are related in actin phylogeny: two orphans find a
home?’, Molecular Biology and Evolution, 18:1551–7.
Keeling, P.J., Luker, M.A. and Palmer, J.D. (2000) ‘Evidence from beta-tubulin phylogeny that
Microsporidia evolved from within the Fungi’, Molecular Biology and Evolution, 17: 23–31.
Knoll, A.H. (1992) ‘The early evolution of Eukaryotes: a geological perspective’, Science, 256:
622–7.
Li, W.-H. (1993) ‘So, what about the molecular clock hypothesis?’, Current Opinions in Genetics and
Development, 3:896–901.
Li, W.-H. and Graur, D. (1991) Fundamentals of Molecular Evolution, Sunderland, Massachusetts:
Sinauer Associates.
Li, W.-H., Tanimura, M. and Sharp, P.M. (1987) ‘An evaluation of the molecular clock hypothesis
using mammalian DNA sequences’, Journal of Molecular Evolution, 25:330–42.
Li, W.-H., Ellsworth, D.L., Krushka, J., Chang, B.H.-J. and Hewett-Hemmett, D. (1996) ‘Rates
of nucleotide substitution in primates and rodents and the generation-time effect hypothesis’,
Molecular Phylogenetics and Evolution, 5:182–7.
Liu, J.-C., Makova, K.D., Adkins, R.M., Gibson, S. and Li, W.-H. (2001) ‘Episodic evolution of
growth hormone in primates and emergence of the species specificity of human growth
hormone receptor’, Molecular Biology and Evolution, 18:945–53.
Martin, A.P. and Palumbi, S.R. (1993) ‘Body size, metabolic rate, generation time, and the molecular
clock’, Proceedings of the National Academy of Sciences, USA, 90:4087–91.
McIlroy, D., Green, O.R. and Brasier, M.D. (2001) ‘Palaeobiology and evolution of the earliest
agglutinated Foraminifera: Platysolenites, Spirosolenites and related forms’, Lethaia, 34:13–29.
Messier, W. and Stewart, C.-B. (1997) ‘Episodic adaptive evolution of primate lysozymes’, Nature,
385:151–4.
Morin, L. (2000) ‘Long branch attraction effects and the status of “basal Eukaryotes”: phylogeny and
structural analysis of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas
agilis’, Journal of Eukaryotic Microbiology, 47:167–77.
Neefs, J.-M., Van de Peer, Y., De Rijk, P., Chapelle, S. and De Wachter, R. (1993) ‘Compilation
of small subunit RNA structures’, Nucleic Acids Research, 21:3025–49.
Nichol, S.T., Rowe, J.E. and Fitch, W.M. (1993) ‘Punctuated equilibrium and positive Darwinian
evolution in vesicular stomatitis virus’, Proceedings of the National Academy of Sciences, USA, 90:
10424–8.
O’h Uigin, C. and Li, W.-H. (1992) ‘The molecular clock ticks regularly in muroid rodents and
hamsters’, Journal of Molecular Evolution, 35:377–84.
Olsen, G.J., Matsuda, H., Hagstrom, R. and Overbeek, R. (1994) ‘FastDNAml: a tool for
construction of phylogenetic trees of DNA sequences using maximum likelihood’, Computer
Applications in the Biosciences, 10:41–8.
Pawlowski, J. (2000) ‘Introduction to the molecular systematics of Foraminifera’, Micropaleontology,
46 (supplement 1): 1–12.
Pawlowski, J., Bolivar, I., Guiard-Maffia, J. and Gouy, M. (1994) ‘Phylogenetic position of
Foraminifera inferred from LSU rDNA gene sequences’, Molecular Biology and Evolution, 11:
929–38.
Pawlowski, J., Bolivar, I., Fahrni, J., Cavalier-Smith, T. and Gouy, M. (1996) ‘Early origin of
Foraminifera suggested by SSU rDNA gene sequences’, Molecular Biology and Evolution, 13:
445–50.
Pawlowski, J., Bolivar, L., Fahrni, J., de Vargas, C., Gouy, M. and Zaninetti, L. (1997) ‘Extreme
differences in rates of molecular evolution of Foraminifera revealed by comparison of
ribosomal DNA sequences and the fossil record’, Molecular Biology and Evolution, 14:498–505.


EVOLUTION IN THE STEM-LINEAGE OF FORAMINIFERA 119
Free download pdf