136
Folkins C, Shaked Y, Man S et al (2009) Glioma tumor stem-like cells promote tumor angiogenesis
and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer
Res 69(18):7243–7251
Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934
Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding
angiogenic protein—basic fibroblast growth factor—is stored within basement membrane. Am
J Pathol 130(2):393–400
Fortunel NO, Otu HH, Ng HH et al (2003) Comment on “ ‘Stemness’: transcriptional profiling of
embryonic and adult stem cells” and “a stem cell molecular signature”. Science 302(5644):393.
author reply 393
Friedmann-Morvinski D, Verma IM (2014) Dedifferentiation and reprogramming: origins of can-
cer stem cells. EMBO Rep 15(3):244–253
Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438
Garcion E, Halilagic A, Faissner A, French-Constant C (2004) Generation of an environmen-
tal niche for neural stem cell development by the extracellular matrix molecule tenascin
C. Development 131(14):3423–3432
Gerstner E, Zhang Z, Fink J et al (2016) ACRIN 6684: assessment of tumor hypoxia in newly
diagnosed GBM using 18F-FMISO PET and MRI. Clin Cancer Res 22:5079–5086
Gilbertson RJ, Rich JN (2007) Making a tumour's bed: glioblastoma stem cells and the vascular
niche. Nat Rev Cancer 7(10):733–736
Gilmore AP, Romer LH (1996) Inhibition of focal adhesion kinase (FAK) signaling in focal adhe-
sions decreases cell motility and proliferation. Mol Biol Cell 7(8):1209–1224
Gorlach A, Bonello S (2008) The cross-talk between NF-kappaB and HIF-1: further evidence for
a significant liaison. Biochem J 412(3):e17–e19
Greene-Schloesser D, Robbins ME (2012) Radiation-induced cognitive impairment-from bench to
bedside. Neurooncology 14(suppl 4):iv37–iv44
Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD (2012)
Radiation-induced brain injury: a review. Front Oncol 2:73
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674
Hardee ME, Zagzag D (2012) Mechanisms of glioma-associated neovascularization. Am J Pathol
181(4):1126–1141
Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease.
Pharmacol Rev 57(2):173–185
Heddleston JM, Li Z, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains
glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype.
Cell Cycle 8(20):3274–3284
Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN (2010) Hypoxia inducible factors
in cancer stem cells. Br J Cancer 102(5):789–795
Heddleston JM, Hitomi M, Venere M et al (2011) Glioma stem cell maintenance: the role of the
microenvironment. Curr Pharm Des 17(23):2386–2401
Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in
tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998
Hottinger AF, Stupp R, Homicsko K (2014) Standards of care and novel approaches in the manage-
ment of glioblastoma multiforme. Chin J Cancer 33(1):32–39
Huang P, Rani MR, Ahluwalia MS et al (2012) Endothelial expression of TNF receptor-1 gen-
erates a proapoptotic signal inhibited by integrin alpha6beta1 in glioblastoma. Cancer Res
72(6):1428–1437
Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA (2002) Human
cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers
in vitro. Glia 39(3):193–206
Jackson M, Hassiotou F, Nowak A (2015) Glioblastoma stem-like cells: at the root of tumor recur-
rence and a therapeutic target. Carcinogenesis 36(2):177–185
Jhaveri N, Chen TC, Hofman FM (2016) Tumor vasculature and glioma stem cells: contributions
to glioma progression. Cancer Lett 380(2):545–551
A. Sattiraju et al.