Imaging in Stem Cell Transplant and Cell-based Therapy

(Nancy Kaufman) #1
35


  1. Tong L, Wei Q, Wei A, Cheng JX. Gold nanorods as contrast agents for biological imaging:
    optical properties, surface conjugation and photothermal effects. Photochem Photobiol.
    2009;85(1):21–32.

  2. Kim JW, Shashkov EV, Galanzha EI, Kotagiri N, Zharov VP.  Photothermal antimicrobial
    nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters. Lasers Surg
    Med. 2007;39(7):622–34.

  3. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties
    of gold nanoparticles of different size, shape, and composition: applications in biological
    imaging and biomedicine. J Phys Chem B. 2006;110(14):7238–48.

  4. Kim J-W, Deaton R. Molecular self-assembly of multifunctional nanoparticle composites with
    arbitrary shapes and functions: challenges and strategies. Part Part Syst Charact.
    2013;30(2):117–32.

  5. Kim JW, Kim JH, Deaton R. DNA-linked nanoparticle building blocks for programmable mat-
    ter. Angew Chem Int Ed Engl. 2011;50(39):9185–90.

  6. Kim JW, Kim JH, Deaton R. Programmable construction of nanostructures: assembly of nano-
    structures with various nanocomponents. IEEE Nanotechnol Mag. 2012;6(1):19–23.

  7. Kozlovskaya V, Kharlampieva E, Khanal BP, Manna P, Zubarev ER, Tsukruk VV.  Ultrathin
    layer-by-layer hydrogels with incorporated gold nanorods as pH-sensitive optical materials.
    Chem Mater. 2008;20(24):7474–85.

  8. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, et al. Metal nanoshells. Ann
    Biomed Eng. 2006;34(1):15–22.

  9. Bardhan R, Chen W, Perez-Torres C, Bartels M, Huschka RM, Zhao LL, et al. Nanoshells with
    targeted simultaneous enhancement of magnetic and optical imaging and photothermal thera-
    peutic response. Adv Funct Mater. 2009;19(24):3901–9.

  10. Cho SK, Emoto K, Su LJ, Yang X, Flaig TW, Park W. Functionalized gold nanorods for ther-
    mal ablation treatment of bladder cancer. J Biomed Nanotechnol. 2014;10(7):1267–76.

  11. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9.

  12. Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on elec-
    trospun type I collagen nanofibers. Stem Cells. 2006;24(11):2391–7.

  13. Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K, et al. Antithrombogenic property
    of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U
    S A. 2007;104(29):11915–20.

  14. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. Nanotoxicology. Occup Environ Med.
    2004;61(9):727–8.

  15. Joris F, Manshian BB, Peynshaert K, De Smedt SC, Braeckmans K, Soenen SJ.  Assessing
    nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized
    models for bridging the in vitro-in vivo gap. Chem Soc Rev. 2013;42(21):8339–59.

  16. Lewinski N, Colvin V, Drezek R.  Cytotoxicity of nanoparticles. Small (Weinheim an der
    Bergstrasse, Germany). 2008;4(1):26–49.

  17. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML.  Effects of nanomaterial physico-
    chemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009;61(6):457–66.


2 Nanotechnology-Based Stem Cell Applications and Imaging

Free download pdf