Revival: Biological Effects of Low Level Exposures to Chemical and Radiation (1992)

(Barry) #1

86 BIOLOGICAL EFFECTS OF LOW LEVEL EXPOSURES



  1. Mehendale, H. M. “Role of Hepatocellular Regeneration and Hepatolobular
    Healing in the Final Outcome of Liver Injury: A Two-Stage Model of Toxic­
    ity,” Biochem. Pharmacol. 42:1155-1162 (1991).

  2. Zieve, L., W. R. Anderson, C. Lyftogt, and K. Draves. “Hepatic Regenerative
    Enzyme Activity after Pericentral and Periportal Lobular Toxic Injury,” Tox­
    icol. Appl. Pharmacol. 86:147-158 (1986).

  3. Zieve, L., W. R. Anderson, and D. Lafontaine. “Hepatic Failure Toxins
    Depress Liver Regenerative Enzymes after Periportal Injury with Allyl Alcohol
    in the Rat,” J. Lab. Clin. Med. 111:725-730 (1988).

  4. Luckey, T. Radiation Hormesis in Mammals (Boca Raton, FL: CRC Press,
    1991), pp. 256.

  5. Boxenbaum, H., P. Neafsey, and D. Fournier. “Hormesis, Gompertz Func­
    tions, and Risk Assessment,” Drug Metab. Rev. 19:195-229 (1988).

  6. Sagan, L. “On Radiation, Paradigms, and Hormesis,” Science 245:574, 621
    (1989).

  7. Utley, W. S., and H. M. Mehendale. “Pentobarbital-Induced Cytosolic Cyto-
    protective Mechanisms That Offset Increases in NADPH Cytochrome P-450
    Reductase Activity in Menadione-Mediated Cytotoxicity,” Toxicol. Appl.
    Pharmacol. 99:323-333 (1989).

  8. Utley, W. S., and H. M. Mehendale. “Phenobarbital-Induced Cytoprotective
    Mechanisms in Menadione Metabolism: The Role of Glutathione Reductase
    and DT-Diaphorase,” Int. J. Biochem. 22:957-967 (1990).

  9. Utley, W. S., and H. M. Mehendale. “Cytoprotective Mechanisms That Offset
    Phenobarbital-Induced Increment in 0 2 Generated from Quinone Recycling,”
    in Proceedings of the International Conference on Biological Oxidation Sys­
    tems, Vol. 1, C. C. Reddy, G. Hamilton, and K. M. Madhyastha, Eds. (San
    Diego, CA: Academic Press, 1990), Chapter 1, pp. 183-200.

  10. Thor, H., M. T. Smith, P. Hartzell, G. Bellomo, S. A. Jewell, and S. Orrenius.
    “The Metabolism of Menadione (2-Methyl-1,4-naphthoquinone) by Isolated
    Hepatocytes,” J. Biol. Chem. 257:12419-12425 (1982).

  11. Recknagel, R. O., and E. A. Glende, Jr. “Lipid Peroxidation: A Specific Form
    of Cellular Injury,” in Handbook of Physiology, D. H. K. Lee, Ed. (Bethesda,
    MD: American Physiological Society; Baltimore, MD: Williams and Wilkins,
    1977), Section 9, pp. 591-601.

  12. Slater, R. F. “Free Radicals and Tissue Injury: Fact and Fiction,” Br. J. Cancer
    (Suppl.) 8:5-10 (1987).

  13. Mehendale, H. M. “Amplification of Hepatotoxicity and Lethality of CC14
    and CHC13 by Chlordecone,” Rev. Biochem. Toxicol. 10:91-138 (1989).

  14. Mehendale, H. M. “Mechanism of the Lethal Interaction of Chlordecone and
    CC14 at Nontoxic Doses,” Toxicol. Lett. 49:215-241 (1989).

  15. Mehendale, H. M. “Potentiation of Halomethane Hepatotoxicity by Chlorde­
    cone: A Hypothesis for the Mechanism,” Med. Hypoth. 33:289-299 (1990).

  16. Slater, T. F. “Necrogenic Action of Carbon Tetrachloride in the Rat: Specula­
    tive Mechanism Based on Activation,” Nature (London) 209:36-40 (1966).

  17. Koch, R. R., E. A. Glende, Jr., and R. O. Recknagel. “Hepatotoxicity of
    Bromotrichloromethane-Bond Dissociation Energy and Lipid Peroxidation,”
    Biochem. Pharmacol. 23:2907-2915 (1974).

  18. Sipes, I. G., G. Krishna, and J. R. Gillette. “Bioactivation of Carbon Tetra­

Free download pdf