dmm
l= dl
0
The moment of inertia of the elementary mass is
given as
dI = (dm)r^2
The moment of inertia of the rod,
I = ³dI I = ³r^2 dmSubstituting r = l sin q and dm =m
ldl
0. we obtain
Ilm
l=∫(s^22 in ) dl
0θ =m
lldlml
lsin l
sin20(^20)
3
0
2
(^03)
θ (^0) θ=
∫
I
ml
=^0223sin θ- (a) : Acceleration of the rod a
F
m=
Angular acceleration of the rodατ
== =
IFl
mlF
ml/
12
6
(^2) /
Net acceleration of point P,
aP = a – Dx = 0
F
mF
mlxxl
−=⇒==6
0
6
1m- (d) : The total KE is K = Krod + Khollow (^) shere
- Ksolid (^) sphere
where Krod =
1
2
mv^2 ...(i)
Since the CM of each sphere moves with a velocityvv
CM= 2 ,KmvK
hollowsphereCM R=+
1
2
(^21)
2
2
=
+
=
1
22
1 2
3
5
24
(^22)
m vmv ... (ii)
Km
v
solidsphere= + = mv
1
22
1
2
5
7
40
2(^2) ...(iii)
Adding equation (i), (ii) and (iii)
km=+vmvm+=vmv
1
2
5
24
7
40
53
60
2222- (b) : The angular momentum of the disc about O is
C vxy(x,R)
Or
CFD aDx P ax
LmOC=×rvCC+ωI=+×+
mxiRjvimR v
R() k1
2
2 3
=+mxiRjv×+imR v ×
R()^1 km vR()ji
22 3
+−+=
3
2
3
22
mvRk mvRk mvRkmvR
k- (c) : As cotton reel
rolls point of contact of
reel with ground will
act as instantaneous
axis of rotation.
vP = Z(R + r)
(^) ω=
= −
v
RrP 20 rad s^1Velocity of centre of reelvRvR
C Rr
==p
+=
×
+
ω = −
()()620
20 10
4 m s^1- (d) : Let aer collision velocity of rod be v and
angular velocity be Z then
mv 0 = mv + MV mv 0 x = mvx +Ml^2
12ωmv 0 = mv + Mxωη2
12
From above equations,
Mx
MV xVωη
ωη(^22)
12
=⇒= 12
Velocity of father end of the rod = V−lω
2
=−=− ωηωηωη^2 η
12 2261
xxxIf this velocity is opposite to v 0 , then
η
η
6−< 10 ⇒< 6
- (d) : The fall of centre of
gravity h is given by
L
h
L2
2
60
−
=°cos ,or hL
=− °
2
(c 16 os 0 )vP=6 m s–vCL/L
2- h
G
hf
rL/60° G¢