2018-10-01_Physics_For_You

(backadmin) #1
SOLUTIONS


  1. (b) : Net force on – q towards the centre.
    F = (2F 1 ·sinq) =






×


+


(^222)
22


.


KQq
dR

R


dR
For particle to move in a circle
F = mZ^2 R

Ÿ 222 KQqR 32 2
dR

mR
()+ /


Ÿ ω=
+

2


2232

KQq
md()R /

=


×× ×××


××+


=




2910 10 10 10 −


90 10 34


400


96
32232

1
()/

rads


  1. (a) : Work done for moving a charge q 0 from B to A.
    WB o A = q 0 (VA – VB)
    Also, VA = potential at point A


=+=+









kq
r

kq
r

k

q
r

q
r

1
1

2
2

1
1

2
2

=

−×


×


+


×


×














=





(^10) −


510


15 10


210


510


10


15


10 6
2

6
2

6
V

Similarly,

VB=

×


×



×


×














=



×





(^10) −


210


15 10


510


510


13


15


10 6
2

6
2 10 V

6

⇒=××−


×













WBA→ 310 − =

1
15

10

13
15

(^6610628) .J



  1. (b) : When S 1 is closed and S 2 is open, w 1 is in circuit.
    Current through w 1.


I
Rr

p
1 = +

ε
()

Ÿ (^) I 1 pp
213


=


+


=


εε

Potential dierence across l
2

length of w 1

==

1


2


2


(^13)


[]I


εp

is should be equal to H So,

εp
3

= H Ÿ Hp = 3H

Similarly for second case : I
RR

p

(^21)


3


1


=


+


=


+


ε ε

Potential dierence across 2l/3 length of w 2
==
+









=


+


2


3


2


3


3


1


2


(^21)


IR


R


R


R


R


εε

is should be equal to H. So,

2


1


ε
ε

R


R+


= Ÿ R = 1 :



  1. (c) : Number density of electrons,


n=

×
=





=



− 

(^610) −−
63 9
6
7
10
6
7
10
23
3
23 3293
()gg/( cm )
cm m
B
Q Q
A d
R
F 1 F 1
d
–q
A = pr^2 = p(0.5 × 10–3m)^2 = 0.25p × 10–6 m^2
v


I


d neA

=


=


−−××−


11


671029 3116 10 9602510 2


.


( /) (. )


A


mCπ m
= 0.1 mm s–1


  1. (b) : As I


VV


ABC= 44 ΩΩ+ = 8 Ω,


()VVAB−=VV










=


8


4


Ω 2



Similarly, (VA – VD) =

V


4


us, (VD – VB) = (VD – VA) + (VA – VB)

=


+=


VVV


424


Since, (VD – VB) > 0, current ows from D to B.


  1. (a) :





Fqe= E
=−()16 10×−−^18 () 104 k
=×16 10−^14 k
  
Fqm=×()vB
=−()16 10××−^18 () 10 iBj
=−()16 10× −^17 Bk
From gure, since

 


FFme+=0,FFme=−
or 16 × 10–17 B = 16 × 10–14
Hence, B = 10^3 Wb m–2


  1. (a) : Refer to gure. B I
    AB OC


=−−


μ
π

(^0) αα
4( )
[sin sin( )]


μ
πα
(^0) α
4


2


I


Rcos

(sin ) (as OC = R cos D)

or B

I


AB R


=







⊗


μ
π

(^0) α
2
tan


B


I


ADB R


=


















μ
π

(^0) πα
4


() 22


=−









μ
π

(^0) πα
2


I


R


()


us, B = BADB + BAB =−+

μ
π

(^0) πα α
2


I


R


(tan )


  1. (a) : Angular frequency of oscillation
    ω= =
    ××−−×


11


LC 1 02. 1036810


= 2.5 × 10^4 rad s–1 = 25 × 10^3 rad s–1
Q
C

L


dI
dt

Q


C


L


dQ
11 dt

2
−= 00 ⇒+ 2 =

+Z

–Z

Fe
v
Bo Fm
Eo

o

o

o
q X

Y

(2p – 2D)

R

D

A C B

O
D D

I
Free download pdf