SOLUTIONS- (b) : Net force on – q towards the centre.
F = (2F 1 ·sinq) =
×
+
(^222)
22
.
KQq
dRR
dR
For particle to move in a circle
F = mZ^2 R 222 KQqR 32 2
dRmR
()+ /=ω ω=
+2
2232KQq
md()R /=
×× ×××
××+
=
−
−2910 10 10 10 −
90 10 34
400
96
322321
()/rads- (a) : Work done for moving a charge q 0 from B to A.
WB o A = q 0 (VA – VB)
Also, VA = potential at point A
=+=+
kq
rkq
rkq
rq
r1
12
21
12
2=−×
×
+
×
×
=
−
−−(^10) −
510
15 10
210
510
10
15
10 6
26
26
VSimilarly,VB=×
×
−
×
×
=
−
×
−
−−(^10) −
210
15 10
510
510
13
15
10 6
26
2 10 V6⇒=××−−
×
WBA→ 310 − =1
151013
15(^6610628) .J
- (b) : When S 1 is closed and S 2 is open, w 1 is in circuit.
Current through w 1.
I
Rrp
1 = +ε
() (^) I 1 pp
213
=
+
=
εεPotential dierence across l
2length of w 1==1
2
2
(^13)
[]I
εpis should be equal to H So,εp
3= H Hp = 3HSimilarly for second case : I
RRp(^21)
3
1
=
+
=
+
ε εPotential dierence across 2l/3 length of w 2
==
+
=
+
2
3
2
3
3
1
2
(^21)
IR
R
R
R
R
εεis should be equal to H. So,2
1
ε
εR
R+
= R = 1 :
- (c) : Number density of electrons,
n=×
=
=
− (^610) −−
63 9
6
7
10
6
7
10
23
3
23 3293
()gg/( cm )
cm m
B
Q Q
A d
R
F 1 F 1
d
–q
A = pr^2 = p(0.5 × 10–3m)^2 = 0.25p × 10–6 m^2
v
I
d neA=
=
−−××−
11
671029 3116 10 9602510 2
.
( /) (. )
A
mCπ m
= 0.1 mm s–1- (b) : As I
VV
ABC= 44 ΩΩ+ = 8 Ω,
()VVAB−=VV
=
8
4
Ω 2
Ω
Similarly, (VA – VD) =V
4
us, (VD – VB) = (VD – VA) + (VA – VB)=−
+=
VVV
424
Since, (VD – VB) > 0, current ows from D to B.- (a) :
Fqe= E
=−()16 10×−−^18 () 104 k
=×16 10−^14 k
Fqm=×()vB
=−()16 10××−^18 () 10 iBj
=−()16 10× −^17 Bk
From gure, sinceFFme+=0,FFme=−
or 16 × 10–17 B = 16 × 10–14
Hence, B = 10^3 Wb m–2- (a) : Refer to gure. B I
AB OC
=−−
μ
π(^0) αα
4( )
[sin sin( )]
μ
πα
(^0) α
4
2
I
Rcos(sin ) (as OC = R cos D)or BI
AB R
=
⊗
μ
π(^0) α
2
tan
B
I
ADB R
=
−
⊗μ
π(^0) πα
4
() 22
=−
⊗μ
π(^0) πα
2
I
R
()
us, B = BADB + BAB =−+μ
π(^0) πα α
2
I
R
(tan )- (a) : Angular frequency of oscillation
ω= =
××−−×
11
LC 1 02. 1036810
= 2.5 × 10^4 rad s–1 = 25 × 10^3 rad s–1
Q
CL
dI
dtQ
C
L
dQ
11 dt2
−= 00 ⇒+ 2 =+Z–ZFe
v
Bo Fm
Eoooo
q XY(2p – 2D)RDA C BO
D DI