SOLUTIONS
- (b) : Net force on – q towards the centre.
F = (2F 1 ·sinq) =
×
+
(^222)
22
.
KQq
dR
R
dR
For particle to move in a circle
F = mZ^2 R
222 KQqR 32 2
dR
mR
()+ /
=ω
ω=
+
2
2232
KQq
md()R /
=
×× ×××
××+
=
−
−
2910 10 10 10 −
90 10 34
400
96
32232
1
()/
rads
- (a) : Work done for moving a charge q 0 from B to A.
WB o A = q 0 (VA – VB)
Also, VA = potential at point A
=+=+
kq
r
kq
r
k
q
r
q
r
1
1
2
2
1
1
2
2
=
−×
×
+
×
×
=
−
−
−
(^10) −
510
15 10
210
510
10
15
10 6
2
6
2
6
V
Similarly,
VB=
×
×
−
×
×
=
−
×
−
−
−
(^10) −
210
15 10
510
510
13
15
10 6
2
6
2 10 V
6
⇒=××−
−
×
WBA→ 310 − =
1
15
10
13
15
(^6610628) .J
- (b) : When S 1 is closed and S 2 is open, w 1 is in circuit.
Current through w 1.
I
Rr
p
1 = +
ε
()
(^) I 1 pp
213
=
+
=
εε
Potential dierence across l
2
length of w 1
==
1
2
2
(^13)
[]I
εp
is should be equal to H So,
εp
3
= H Hp = 3H
Similarly for second case : I
RR
p
(^21)
3
1
=
+
=
+
ε ε
Potential dierence across 2l/3 length of w 2
==
+
=
+
2
3
2
3
3
1
2
(^21)
IR
R
R
R
R
εε
is should be equal to H. So,
2
1
ε
ε
R
R+
= R = 1 :
- (c) : Number density of electrons,
n=
×
=
=
−
(^610) −−
63 9
6
7
10
6
7
10
23
3
23 3293
()gg/( cm )
cm m
B
Q Q
A d
R
F 1 F 1
d
–q
A = pr^2 = p(0.5 × 10–3m)^2 = 0.25p × 10–6 m^2
v
I
d neA
=
=
−−××−
11
671029 3116 10 9602510 2
.
( /) (. )
A
mCπ m
= 0.1 mm s–1
- (b) : As I
VV
ABC= 44 ΩΩ+ = 8 Ω,
()VVAB−=VV
=
8
4
Ω 2
Ω
Similarly, (VA – VD) =
V
4
us, (VD – VB) = (VD – VA) + (VA – VB)
=
−
+=
VVV
424
Since, (VD – VB) > 0, current ows from D to B.
- (a) :
Fqe= E
=−()16 10×−−^18 () 104 k
=×16 10−^14 k
Fqm=×()vB
=−()16 10××−^18 () 10 iBj
=−()16 10× −^17 Bk
From gure, since
FFme+=0,FFme=−
or 16 × 10–17 B = 16 × 10–14
Hence, B = 10^3 Wb m–2
- (a) : Refer to gure. B I
AB OC
=−−
μ
π
(^0) αα
4( )
[sin sin( )]
μ
πα
(^0) α
4
2
I
Rcos
(sin ) (as OC = R cos D)
or B
I
AB R
=
⊗
μ
π
(^0) α
2
tan
B
I
ADB R
=
−
⊗
μ
π
(^0) πα
4
() 22
=−
⊗
μ
π
(^0) πα
2
I
R
()
us, B = BADB + BAB =−+
μ
π
(^0) πα α
2
I
R
(tan )
- (a) : Angular frequency of oscillation
ω= =
××−−×
11
LC 1 02. 1036810
= 2.5 × 10^4 rad s–1 = 25 × 10^3 rad s–1
Q
C
L
dI
dt
Q
C
L
dQ
11 dt
2
−= 00 ⇒+ 2 =
+Z
–Z
Fe
v
Bo Fm
Eo
o
o
o
q X
Y
(2p – 2D)
R
D
A C B
O
D D
I