e solution of this equation is Q = Q 0 sin (Zt + φ),
where t = 0, Q = Q 0
QCV
CC
CC
0 eq^12 V
12
==
+ =
×× ×
×
−
−
8210 20
10 10
12
6
=32 × 10–6C ∵ (^) φ=π
2
? Q = (32 PC) cos (2.5 × 10^4 × 125 × 10–6) 32 PC
- (b) : For power to be consumed at the rate of
1100
5
= 220 W, we have P = EvIv cos q
220
220 220
222222
=
×
+
×
RL +
R
ωωRL
where R =
V
P
2 2202
1100
== 44 Ω
220 220 44
44
44 220 44
2
22
= ×^22
+
() ⇒+ =×
()
()
L
L
ω
ω
Lω= 220 44 44×−^2 = 88 Ω
L
f
=
×
=
×
=
×
×=
88
2
88
250
88
222
7
50
028
ππ
.H
- (c) : Let f 1 and f 2 be the focal length in water.
en,^111112
1
11
fRwwRR
=−
+
=−
μ
μ
μ
μ
...(i)
1
1
11
1
2
2
22
fRwwRR
=−
−−=−
−
μ
μ
μ
μ
...(ii)
Adding (i) and (ii), we get
112
12
12
ff wR
+=
()μμ−
μ
or^1
30
(^212)
()μμ−
μwR
? (μ 1 – μ 2 ) =
μwR
60
1
3
=
- (a) : e detector will
receive the maximum light
when the image of point
source of light coincides
with the position of
detector.
Let at any time t, image of S and detector coincides
then,
for u = – (100 – 10t)cm, v = 20t cm, f = 10 cm
e detector receives maximum light.
From,^111
vuf
−=^ ^
1
20
1
100 10
1
tt 10
−
−−()
=
2 t^2 – 19t + 10 = 0 t = 0.56 s and 8.94 s
- (c) : Omin =
hc
eV
==
12400
40000
03 1. Å
At 40 kV : Omin =
12400
40000 = 0.31 Å
S D
100 –1 0 t 20 t
Wavelength of KD is independent of applied potential.
For KD , X-ray :
3
4
() 13. 61 ()ZE−^2 ==
hc
λKα
Given that λKα = 3 Omin
1216
()Z− 12
= 3 × 0.31
⇒−()ZZ 1 =⇒−= ⇒=Z
1216
093
(^2130813637)
.
- (c)
- (c) : We know that N = N 0
1
2
n
For A, NN N
N
A
nA
=
=
(^00) =
4
(^10)
2
1
216
(^) ∵n t
A TA
===
80
20
4
For B, NNB N N
nB
= (^00) = =
2
(^10)
2
1
24
(^) ∵ n t
B TB
===
80
40
2
?
N
N
A
B
=
1
4
or NA : NB = 1:4
- (a)