SOLUTION SET-62
- (c) : According to question
Mg sinq – f = ma ...(i)
Now, Torque acting about centre of mass is due to
friction force
τ
==fR Iα
R
⇒=fMR a =
R
(^2) Ma
5
2
5
2
2 ...(ii)
From eqn (i) and (ii)
a Mg
M
g
==sin
θ sinθ
7
5
5
7
q
q
Mg
sin
q
Mg Mgcosq
a f
If slides without friction. Let the acceleration be ac
∴′ag==sinθ a
7
5
- (a) : e perpendicular distance of the weight
acting through P from OR =
l
2
cosT.
Again the perpendicular distance of the weight
acting through Q from O is,
OQ = BQ – BO =
l
l
2
cos
At equilibrium of two weights
mg
×=l mg×−l l
22 coscθθos
⇒=^3
2
1
2
cosθ
⇒=cosθ^1
3
⇒=θ cos−^1 ^1
3
- (b) : Conserving angular momentum
mv RmvR
v
v
.c 12 os ..;^2
1
() 60 ° 42 ==
Conserving energy of the system
−+GMm =− +
R
mv GMm
R
mv
4
1
2
1
(^12)
2
2
2
1
2
1
2
3
4
1
(^22)
2
1
2
1
vvGM^2
R
v GM
R
−= or =
v 1 1 61
2
64 10^8
2
=×= kms−
A
B q
R O
mg
mg
C
Q
- (b) : Let mass of the ball is ‘m’.
(^1) =−()
2
mv^2 mV V
AB
1
2
3
2
mv^2 m GM
R
GM
R
=− −−
1
22
mv^2 GMm
R
v
GM
R
Velocity of ball just aer collision,
ve′==v
GM
R
1
5
Let r be the distance from the centre upto where
the ball reaches aer collision. en,
1
2
mv^2 mVrV
′ =−[()]()centre
1
50
3
2
3
(^322)
GMm^22
R
m
GM
R
GM
R
Rr
1
50
3
2
3
(^22)
2
2
r
R
⇒=⇒=
1
25 5
2
2
r
R
r R
The desired distance,
SR
RRR
55
7
5
- (c) : F = mg sinq | mgtan q, (∵ q is small)
x^2 = 40y
24 x 0
dy
dx
=
dy
dx
=^2 x
40
Fmg
dy
dx
mg
x
a
x
==−×⇒=−
2
40 2
⇒=ω^1
2
(^) ()∵ax=−ω^2
q mgcosq
mgsinqmg
Focus NEET/JEE (XI) : Gravitation
Focus NEET/JEE (XII) : Electromagnetic Waves
and Optics
Monthly Tune Up (XI) : Gravitation
Monthly Tune Up (XII) : Electromagnetic Waves
and Optics
Brain Map
: Work, Energy and Power
Focus NEET/JEE (XI)
:^ Gravitation
Focus NEET/JEE (XII)
:Electromagnetic Waves
and Optics
Monthly Tune Up (XI)
: Gravitation
Monthly Tune Up (XII)
:Electromagnetic Waves
and Optics
Brain Map^
:Work, Energy and Power
GLIMPSE OF NEXT ISSUE...