Drug Metabolism in Drug Design and Development Basic Concepts and Practice

(nextflipdebug2) #1

Kurosaki M, Terao M, Barzago MM, Bastone A, Bemardinello D, Salmona M,
Garattini E. The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase
homologue 3, a novel member of the molybdo-flavoenzyme family with selective
expression in the olfactory mucosa. J Biol Chem 2004;279:50482–50498.
Lacourciere GM, Armstrong RN. The catalytic mechanism of microsomal epoxide
hydrolase involves an ester intermediate. J Am Chem Soc 1993;115:10466–10467.
Lacourciere GM, Armstrong RN. Microsomal and soluble epoxide hydrolases are
members of the same family of CX bond hydrolase enzymes. Chem Res Toxicol
1994;7:121–124.
Macdonald TL, Gutheim WG, Martin RB, Guengerich FP. Oxidation of substituted
N,N-dimethylanilines by cytochrome P450: estimation of the effective oxidation–
reduction potential of cytochrome P450. Biochemistry 1989;28:2071–2077.
Marnett LJ, Landino LM, Reddy GR. Peroxidases. In: Guengerich FP, editor.
Biotransformation, Vol. 3, Comprehensive Toxicology, first ed. Elsevier Science,
Oxford; 1997. p 149–163.
Massey V. The chemical and biological versatility of riboflavin. Biochem Soc Trans
2000;28:283–296.
Miyamoto G, Zahid N, Uetrecht JP. Oxidation of diclofenac to reactive intermediates
by neutrophils, myeloperoxidase, and hypochlorous acid. Chem Res Toxicol
1997;10:414–419.
Miyate M, Kudo G, Lee Y-H, Y.mg TJ, Gelboin HV, Fernandez-Salguero, Kimura S,
Gonzalez FJ. Targeted disruption of the microsomal epoxide hydrolase gene.
Microsomal epoxide hydrolase is required for the carcinogenic acitvity of 7,12-
dimethylbenz[a]anthracene. J Biol Chem 1999;274:23963–23968.
Nicholls CD, Shields MA, Lee PWK, Robbins SM, Beattie TL. UV-dependent
alternative splicing uncouples p53 activity and PIG3 gene function through rapid
proteolytic degradation. J Biol Chem 2004;279:24171–24178.
Ortiz de Montellano PR, De Voss JJ. Substrate oxidation by cytochrome P450 enzymes.
In: Ortiz de Montellano PR, editor. Cytochrome P450: Structure, Mechanism, and
Biochemistry, third ed. Kluwer Academic/Plenum Publishers; New York: 2005.
p 183–245.
Panoutsopoulos GI, Kouretas D, Beedham C. Contribution of aldehyde oxidase,
xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic
aldehydes. Chem Res Toxicol 2004;17:1368–1376.
Penning TM. Introduction and overview of the aldo–keto reductase superfamily. In:
Penning TM, Petrash JM, editors. Aldo-Keto Reductases and Toxicant Metabolism.
first ed. Washington, DC: American Chemical Society; 2004. p 3–20.
Petersen D, Lindahl R. Aldehyde dehydrogenases. In: Guengerich FP, (editor).
Biotransformation, Vol. 3, Comprehensive Toxicology, first ed. Elsevier Science,
Oxford; 1997. p 97–118.
Quinn DM. Esterases of thea,bhydrolase fold family. In: Guengerich FP, editor.
Biotransformation, Vol. 3, Comprehensive Toxicology. first ed. Elsevier Science,
Oxford; 1997. p 243–264.
Rajagopalan KV. Xanthine dehydrogenase and aldehyde oxidase. In: Guengerich FP,
(editor). Biotransformation, Vol. 3, Comprehensive Toxicology. first ed. Elsevier
Science, Oxford; 1997. p 165–178.


34 OXIDATIVE, REDUCTIVE, AND HYDROLYTIC METABOLISM OF DRUGS

Free download pdf