solid base of knowledge that makes lipases one of today’s best characterized and
most frequently employed biocatalysts. Additional work along the lines described
here could further define the modes of action of these enzymes, and result in the
production of custom catalysts specifically optimized for any of a range of desired
biochemical reactions.
4.9 References
Beer, H. D., Wohlfahrt, G., McCarthy, J. E. G., Schomburg, D., Schmid, R.D. (1996), Analysis of the
catalytic mechanism of a fungal lipase using computer-aided design and structural mutants,Prot.
Eng. 9 , 507–517.
Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P.,
Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L., Menge, U. (1990), A serine protease triad
forms the catalytic centre of a triacylglycerol lipase,Nature, 343 , 767–770.
Brenner, S. (1988), The molecular evolution of genes and proteins: a tale of two serines,Nature, 334 ,
528–530.
Brzozowski, A.M., Derewenda U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P.,
Bjorkling, F., Huge-Jensen, B., Patkar, S.A., Thim, L. (1991), A model for interfacial activation in
lipases from the structure of a fungal lipase-inhibitor complex,Nature, 351 , 491–494.
Derewenda, U., Swenson, L., Green, R., Wei, Y., Dodson, G.G., Yamaguchi, S., Haas, M.J., Derewenda,
Z.S. (1994a), An unusual buried polar cluster in a family of fungal lipases,Nature Struct. Biol. 1 ,36–
47.
Derewenda, U., Swenson, L., Green, R., Wei Y., Yamaguchi, S., Joerger, R., Haas, M.J., Derewenda, Z.S.
(1994b), Current progress in crystallographic studies of new lipases from filamentous fungi,Prot. Eng.
7 , 551–557.
Derewenda, U., Swenson, L., Wei, Y., Green, R., Kobos, P.M., Joerger, R., Haas, M.J., Derewenda, Z.S.
(1994c), Conformational lability of lipases observed in the absence of an oil-water interface: crystal-
lographic studies of enzymes from the fungiHumicola lanuginosaandRhizopus delemar,J. Lipid Res.
35 , 524–534.
Derewenda, U., Brzozowski, A.M., Lawson, D.M., Z.S. Derewenda (1992), Catalysis at the interface: the
anatomy of a conformational change in a triglyceride lipase,Biochemistry 31 , 1532–1541.
Haas, M. and Bailey, D.G. (1993), Glycerol as a carbon source for lipase production by the fungusRhi-
zopus delemar,Food Biotechnol. 7 , 49–73.
Haas, M.J., Cichowicz, D.J., Bailey, D.G. (1992), Purification and characterization of an extracellular
lipase from the fungusRhizopus delemar,Lipids 27 , 571–576.
Haas, M.J., Allen, J., Berka, T.R. (1991), Cloning, expression and characterization of a cDNA encoding a
lipase fromRhizopus delemar,Gene 109 , 107–113.
Haas, M.J., Genuario, R., Feairheller, S.H. (1990), Construction of aRhizopus delemargenomic library
and screening for direct lipase gene expression,Food Biotechnol. 4 , 647–661.
Huang, K.H., Akoh, C.C. (1996), Optimization and scale-up of enzymatic synthesis of structured lipid
using RSM,J. Agric. Food Sci. 61 , 137–141.
Joerger, R.D., Haas, M.J. (1994), Alteration of chain length selectivity of aRhizopus delemarlipase
through site-directed mutagenesis,Lipids 29 , 377–384.
Joerger, R.D., Haas, M.J. (1993), Overexpression of aRhizopus delemarlipase gene inE. coli,Lipids 28 ,
81–88.
Kazlauskas, R.J., Bornscheuer, U.T. (1998), Biotransformations with lipases, in Rehm, H.J. and Reed, G.
(Eds),Biotechnology. Second Edition,Vol. 8a, Wiley-VCH, Weinheim, pp. 37–191.
Klein, R.R., King, G., Moreau, R.A., Haas, M.J. (1997a), Altered acyl chain length specificity ofRhizopus
delemarlipase through mutagenesis and molecular modeling,Lipids 32 , 123–130.
Klein, R.R., King, G., Moreau, R.A., McNeill, G.P., Villeneuve, P., Haas, M.J. (1997b), Additive effects of
acyl-binding site mutations on the fatty acid selectivity ofRhizopus delemarlipase,J. Am. Oil Chem.
Soc. 74 , 1401–1407.