High Temperature Superconducting Magnetic Levitation

(やまだぃちぅ) #1
7.6 Three-dimensional modeling and simulations Ë 249

When we replace휎sby a tensor resistivity휌sto take the anisotropy of the HTSC into
account in Eq. (7.73) and consider that


휌s(∇×T)=( 0
8

휌ab 0 0
0 휌ab 0
0 0 훼휌ab

) 1


9


( 0


(^00)
(^00)
(^00)
(^00)
(^00)
8
¤휕Tz
휕y



휕Ty
휕z

¥x̂

œ휕Tx
휕z

−휕Tz
휕x

ŷ

¤


휕Ty
휕x


휕Tx
휕y

¥ẑ

) 1


(^11)
(^11)
(^11)
(^11)
(^11)
9
=휌ab ¤휕Tz
휕y



휕Ty
휕z

¥x̂+œ휕Tx
휕z

−휕Tz
휕x

ŷ+훼¤

휕Ty
휕x

−휕Tx
휕y

¥ẑ¡.

(7.74)

The following equality for the first term in the left side of Eq. (7.73) holds,


∇×휌s(∇×T)=휌ab ̈훼

휕^2 Ty
휕x휕y

−훼휕


(^2) Tx
휕y^2


−휕


(^2) Tx
휕z^2


+휕


(^2) Tz
휕x휕z
©x̂
+휌ab ̈휕
(^2) Tz
휕y휕z



휕^2 Ty
휕z^2

−훼


휕^2 Ty
휕x^2

+훼휕


(^2) Tx
휕y휕x
©ŷ
+휌ab ̈휕
(^2) Tx
휕z휕x


−휕


(^2) Tz
휕x^2


−휕


(^2) Tz
휕y^2


+


휕^2 Ty
휕z휕y

©ẑ. (7.75)

According to the Coulomb gauge, we have∇(∇ ⋅T)=0, i.e.


¬


휕^2 Tx
휕x^2 +

휕^2 Ty
휕y휕x+

휕^2 Tz
휕z휕x­
x̂+¬휕

(^2) Tx
휕x휕t+
휕^2 Ty
휕y^2 +
휕^2 Tz
휕z휕y­



휕^2 Tx
휕x휕z+

휕^2 Ty
휕y휕z+

휕^2 Tz
휕z^2 ­
ẑ= 0. (7.76)

The following identities can be derived from Eq. (7.76),


휕^2 Tz
휕z휕x

= −휕


(^2) Tx
휕x^2



휕^2 Ty
휕y휕x

, 휕


(^2) Tz
휕z휕y


= −휕


(^2) Tx
휕x휕y



휕^2 Ty
휕y^2

, 휕


(^2) Tx
휕x휕z


+


휕^2 Ty
휕y휕z

= −휕


(^2) Tz
휕z^2


. (7.77)

Free download pdf