258 Ë 7 Numerical simulations of HTS Maglev
[4]Yang Y, Zheng XJ. Method for solution of the interaction between superconductor and
permanent magnet. J Appl Phys. 2007;101:113922.
[5]Wang XR, Ren ZY, Song HH, Wang XZ, Zheng J, Wang SY, Wang JS, Zhao Y. Guidance force in
an infinitely long superconductor and permanent magnetic guideway system. Supercond Sci
Technol. 2005;18(2):S99.
[6]Song HH, Wang JS, Wang SY, Ren ZY, Wang XR, Hass O, Fuchs G, Schultz L. Martin BP, editors.
New topics in superconductivity research. Nova Science Publishers; 2006. pp. 107–156.
[7]Sanchez A, Valle ND, Pardo E, Chen DX, Navau C. Magnetic levitation of superconducting bars.
J Appl Phys. 2006;99:113904.
[8]Zhang JH, Zeng YW, Cheng J, Tang X. Optimization of permanent magnet guideway for
HTS Maglev vehicle with numerical methods. IEEE Trans on Appl Supercond. 2008;18(3):
1681–1686.
[9]Lu YY, Wang JS, Wang SY, Zheng J. 3D-Modeling numerical solutions of electromagnetic
behavior of HTSC bulk above permanent magnetic guideway. J Supercond Nov Magn.
2008;21(8):467–472.
[10]Ma GT, Wang JS, Wang SY. 3-D Modeling of High-TcSuperconductor for magnetic levitati-
on/suspension application—Part I: Introduction to the method. IEEE Trans on Appl Supercond.
2010;20(4):2219–2227.
[11]Dias DHN, Motta ES, Sotelo GG, de Andrade R, Jr. Experimental validation of field cooling
simulations for linear superconducting magnetic bearings. Supercond Sci Technol.
2010;23:075013.
[12]Ma GT. Considerations on the finite-element simulation of high-temperature superconductors
for magnetic levitation purposes. IEEE Trans on Appl Supercond. 2013;23(5):3601609.
[13]Navau C, Del-Valle N, Sanchez A. Macroscopic modeling of magnetization and levitation
of hard type-II superconductors:The critical-state model. IEEE Trans on Appl Supercond.
2013;23(1):8201023.
[14]Ma GT, Liu H, Li XT, Zhang H, Xu YY. Numerical simulations of the mutual effect among the
superconducting constituents in a levitation system with translational symmetry. J Appl Phys.
2014;115:083908.
[15]Del-Valle N, Sanchez A, Navau C, Chen DX. A theoretical study of the influence of superconduc-
tor and magnet dimensions on the levitation force and stability of maglev systems. Supercond
Sci Technol. 2008;21:125008.
[16]Ma GT, Wang JS, Wang SY. 3-D Modeling of High-TcSuperconductor for magnetic levitati-
on/suspension application—Part II: Validation with experiment. IEEE Trans on Appl Supercond.
2010;20(4):2228–2234.
[17]Del-Valle N, Sanchez A, Navau C, Chen DX. Lateral-displacement influence on the levitation
force in a superconducting system with translational symmetry. Appl Phys Lett. 2008;
92 (4) :1554.
[18]Ma GT, Wang JS, Wang SY. Numerical investigation of the lateral movement influence on
the levitation force of the bulk HTS based on a 3-D model. IEEE Trans on Appl Supercond.
2010;20(3):924–928.
[19]Del-Valle N, Sanchez A, Navau C, Chen DX. Magnet guideways for superconducting Maglevs:
comparison between halbach-type and conventional arrangements of permanent magnets.
J Low Temp Phys. 2011;162(1–2):62–71.
[20]Lu Y, Zhuang S. Magnetic forces simulation of bulk hts over permanent magnetic railway with
numerical method. Low J. Temp Phys. 2012;169(1–2):111–121.
[21]Del-Valle N, Sanchez A, Pardo E, Chen DX, Navau C. Optimizing levitation force and stability in
superconducting levitation with translational symmetry. Appl Phys Lett. 2007;90:042503.