High Temperature Superconducting Magnetic Levitation

(やまだぃちぅ) #1
References Ë 365

[24]Ichihara T, Matsunaga K, Kita M, Hirabayashi I, Isono M, Hirose M, Yoshii K, Kurihara K,
Saito O, Saito S, Murakami M, Takabayashi H, Natsumeda M, Koshizuka N. Application of
superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system. IEEE
Trans on Appl Supercond. 2005;15:2245–2248.
[25]Matsunaga K, Tomita M, Yamachi N, Iida K, Yoshioka J, Murakami M. YBCO bulk of the
superconducting bearing for a10kWh flywheel. Supercond Sci Technol. 2002;15(5):842–845.
[26]Koshizuka N, Matsunaga K, Yamachi N, Kawaji A, Hirabayashi H, Murakami M, Tomita M,
Unee S, Saito S, Isono M, Nasu H, Maeda T, Ishikawa F. Construction of the stator installed
in the superconducting magnetic bearing for a 10 kWh flywheel. Physica C. 2004;412–414:
756–760.
[27]Koshizuka N. R&D of superconducting bearing technologies for flywheel energy storage
systems. Physica C. 2006;445–448:1103–1108.
[28]Strasik M, Hull JR, Johnson PE, Mittleider J, McCrary KE, McIver CR, Day AC. Performance of
a conduction-cooled high-temperature superconducting bearing. Materials Science and
Engineering B. 2008;151:195–198.
[29]Hull JR, Strasik M, Mittleider JA, Gonder JF, Johnson PE, McCrary KE, McIver CR. High
rotational-rate rotor with high-temperature superconducting bearings. IEEE Trans Appl
Supercond. 2009;19(3):2078–2082.
[30]Werfel FN, Floegel-Delor U, Riedel T, Rothfeld R, Wippich D, Goebel B, Reiner G, Wehlau
N. Towards high-capacity HTS flywheel systems. IEEE Trans Appl Supercond. 2010;20(4):
2272–2275.
[31]Han YH, Park BJ, Jung SY, Han SC, Lee WR, Bae YC. The improved damping of superconductor
bearings for 35 kWh superconductor flywheel energy storage system. Physica C.
2013;485:102–106.
[32]Han YH, Park BJ, Jung SY, Han SC. Study of superconductor bearings for a 35 kWh
superconductor flywheel energy storage system. Physica C. 2012;483:156–161.
[33]Hull JR, Strasik M, Mittleider J, McIver C, McCrary K, Gonder J, Johnson P. Damping of
sub-synchronous whirl in rotors with high-temperature superconducting bearings. IEEE Trans
Appl Supercond. 2011;21(3):1453–1459.
[34]Wang S, Wang J, Deng C, Lu Y, Zeng Y, Song H, Huang H, Jing H, Huang Y, Zheng J, Wang X,
Zhang Y. An update high-temperature superconducting Maglev measurement system. IEEE
Trans Appl Supercond. 2007;17(2):2067–2070.
[35]Kummeth P, Ries G, Nick W, Neumuller HW. Development and characterization of magnetic
HTS bearings for a 400 kW synchronous HTS motor. Supercond Sci Technol. 2004;17(5):
S259–S263.
[36]Werfel FN, Floegel-Delor U, Rothfeld R, Wippich D, Riedel T. Laser beam deflection polygon
scanner using HTS bearings. IEEE Trans Appl Supercond. 2001;11(1):1737–1740.
[37]Werfel FN, Flogel-Delor U, Rothfeld R, Wippich D, Riedel T. Centrifuge advances using HTS
magnetic bearings. Physica C. 2001;354:13–17.
[38]Walter H, Arsac S, Bock J, Siems SO, Canders WR, Leenders A, Freyhardt HC, Fieseler H,
Kesten M. Liquid hydrogen tank with cylindrical superconducting bearing for automotive
application. IEEE Trans Appl Supercond. 2003;13(2):2150–2153.
[39]Leenders A, Ullrich M, Freyhardt HC, Kesten M, Fieseler H, Canders WR, May H, Weh H, Gauss S,
Bock J. Fabrication of HTS monoliths for a bearing system in a cryogenic vessel. IEEE Trans Appl
Supercond. 1999;9(2):992–995.
[40]Gauss S, Albering JH, Bock J, Kesten M, Fieseler H, Canders WR, May H, Freyhardt HC, Ullrich M.
Cryotank with superconducting, magnetic suspension of the interior tank. IEEE Trans Appl
Supercond. 1999;9(2):1004–1007.

Free download pdf